IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v62y2014i2p348-365.html
   My bibliography  Save this article

On the Performance of Sparse Process Structures in Partial Postponement Production Systems

Author

Listed:
  • Mabel C. Chou

    (National University of Singapore Business School, Singapore 119077, Singapore)

  • Geoffrey A. Chua

    (Nanyang Business School, Nanyang Technological University, Singapore 639798, Singapore)

  • Huan Zheng

    (Antai College of Economics and Management, Shanghai Jiaotong University, Shanghai 200052, China)

Abstract

Production postponement, the strategy to hold reserved production capacity that can be deployed based on actual demand signals, is often used to mitigate supply-demand mismatch risk. The effectiveness of this strategy depends crucially on the ease, or flexibility, in deploying the reserved capacity to meet product demands. Existing literature assumes that the reserved capacity is fully flexible, i.e., capable of being deployed to meet the demand of any item in a multiproduct system. Little is known if reserved capacity is held at many different locations, with each location having only a limited range of flexibility on production options. This paper examines how effective the production postponement strategy is in this environment.When the amount of reserved capacity is small (i.e., postponement level near 0%), no amount of flexibility can reap significant benefits. When the reserved capacity is high (i.e., postponement level near 100%), it is well known that a sparse structure such as a 2-chain can perform nearly as well as a fully flexible structure. Hence, process flexibility beyond 2-chain has little impact on the effectiveness of production postponement strategy in these two extreme environments. Interestingly, in a symmetric system, we prove that the performance of 2-chain, vis-à-vis the full flexibility structure, has a wider gap when postponement level (i.e., amount of reserved capacity) is moderate, and thus process flexibility beyond 2-chain matters and affects appreciably the performance of the production postponement strategy. Fortunately, adding a little more flexibility, say turning a 2-chain into a 3-chain, the system can perform almost as well as a full flexibility structure for all postponement levels. This is important as first stage production capacity can be allocated as if the reserve capacity is fully flexible. Our analysis hinges on an exact analytical expression for the performance of d -chain, obtained from solving a related class of random walk problems. To the best of our knowledge, this is the first paper with analytical results on the performance of d -chain for d > 2.

Suggested Citation

  • Mabel C. Chou & Geoffrey A. Chua & Huan Zheng, 2014. "On the Performance of Sparse Process Structures in Partial Postponement Production Systems," Operations Research, INFORMS, vol. 62(2), pages 348-365, April.
  • Handle: RePEc:inm:oropre:v:62:y:2014:i:2:p:348-365
    DOI: 10.1287/opre.2013.1255
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2013.1255
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2013.1255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan A. Van Mieghem & Maqbool Dada, 1999. "Price Versus Production Postponement: Capacity and Competition," Management Science, INFORMS, vol. 45(12), pages 1639-1649, December.
    2. Mabel C. Chou & Geoffrey A. Chua & Chung-Piaw Teo & Huan Zheng, 2011. "Process Flexibility Revisited: The Graph Expander and Its Applications," Operations Research, INFORMS, vol. 59(5), pages 1090-1105, October.
    3. Simchi-Levi, David, 2010. "Operation Rules: Delivering Customer Value through Flexible Operations," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262525151, April.
    4. Seyed M. Iravani & Mark P. Van Oyen & Katharine T. Sims, 2005. "Structural Flexibility: A New Perspective on the Design of Manufacturing and Service Operations," Management Science, INFORMS, vol. 51(2), pages 151-166, February.
    5. David Simchi-Levi & Yehua Wei, 2012. "Understanding the Performance of the Long Chain and Sparse Designs in Process Flexibility," Operations Research, INFORMS, vol. 60(5), pages 1125-1141, October.
    6. Achal Bassamboo & Ramandeep S. Randhawa & Jan A. Van Mieghem, 2010. "Optimal Flexibility Configurations in Newsvendor Networks: Going Beyond Chaining and Pairing," Management Science, INFORMS, vol. 56(8), pages 1285-1303, August.
    7. Tianhu Deng & Zuo-Jun Max Shen, 2013. "Process Flexibility Design in Unbalanced Networks," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 24-32, April.
    8. Johannes Van Biesebroeck, 2007. "Complementarities in automobile production," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(7), pages 1315-1345.
    9. Marshall Fisher & Ananth Raman, 1996. "Reducing the Cost of Demand Uncertainty Through Accurate Response to Early Sales," Operations Research, INFORMS, vol. 44(1), pages 87-99, February.
    10. Ebru K. Bish & Ana Muriel & Stephan Biller, 2005. "Managing Flexible Capacity in a Make-to-Order Environment," Management Science, INFORMS, vol. 51(2), pages 167-180, February.
    11. Suri Gurumurthi & Saif Benjaafar, 2004. "Modeling and analysis of flexible queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(5), pages 755-782, August.
    12. Wallace J. Hopp & Eylem Tekin & Mark P. Van Oyen, 2004. "Benefits of Skill Chaining in Serial Production Lines with Cross-Trained Workers," Management Science, INFORMS, vol. 50(1), pages 83-98, January.
    13. Ana Muriel & Anand Somasundaram & Yongmei Zhang, 2006. "Impact of Partial Manufacturing Flexibility on Production Variability," Manufacturing & Service Operations Management, INFORMS, vol. 8(2), pages 192-205, April.
    14. Hau L. Lee & Corey Billington & Brent Carter, 1993. "Hewlett-Packard Gains Control of Inventory and Service through Design for Localization," Interfaces, INFORMS, vol. 23(4), pages 1-11, August.
    15. Stephen C. Graves & Brian T. Tomlin, 2003. "Process Flexibility in Supply Chains," Management Science, INFORMS, vol. 49(7), pages 907-919, July.
    16. William C. Jordan & Stephen C. Graves, 1995. "Principles on the Benefits of Manufacturing Process Flexibility," Management Science, INFORMS, vol. 41(4), pages 577-594, April.
    17. Achal Bassamboo & Ramandeep S. Randhawa & Jan A. Van Mieghem, 2012. "A Little Flexibility Is All You Need: On the Asymptotic Value of Flexible Capacity in Parallel Queuing Systems," Operations Research, INFORMS, vol. 60(6), pages 1423-1435, December.
    18. Hau L. Lee & Christopher S. Tang, 1997. "Modelling the Costs and Benefits of Delayed Product Differentiation," Management Science, INFORMS, vol. 43(1), pages 40-53, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shixin Wang & Xuan Wang & Jiawei Zhang, 2021. "A Review of Flexible Processes and Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1804-1824, June.
    2. Ning Zhang & Chang Fang, 2020. "Saddle point approximation approaches for two-stage robust optimization problems," Journal of Global Optimization, Springer, vol. 78(4), pages 651-670, December.
    3. Verma, Nishant Kumar & Chatterjee, Ashish K., 2023. "Process flexibility in the presence of product modularity: Does modularity help?," International Journal of Production Economics, Elsevier, vol. 256(C).
    4. Shixin Wang, 2023. "The Power of Simple Menus in Robust Selling Mechanisms," Papers 2310.17392, arXiv.org, revised Sep 2024.
    5. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    6. Chua, Geoffrey A. & Chen, Shaoxiang & Han, Zhiguang, 2016. "Hub and Chain: Process Flexibility Design in Non-Identical Systems Using Variance Information," European Journal of Operational Research, Elsevier, vol. 253(3), pages 625-638.
    7. Guodong Lyu & Wang-Chi Cheung & Mabel C. Chou & Chung-Piaw Teo & Zhichao Zheng & Yuanguang Zhong, 2019. "Capacity Allocation in Flexible Production Networks: Theory and Applications," Management Science, INFORMS, vol. 65(11), pages 5091-5109, November.
    8. Arash Asadpour & Xuan Wang & Jiawei Zhang, 2020. "Online Resource Allocation with Limited Flexibility," Management Science, INFORMS, vol. 66(2), pages 642-666, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Simchi-Levi & Yehua Wei, 2012. "Understanding the Performance of the Long Chain and Sparse Designs in Process Flexibility," Operations Research, INFORMS, vol. 60(5), pages 1125-1141, October.
    2. Timothy C. Y. Chan & Daniel Letourneau & Benjamin G. Potter, 2022. "Sparse flexible design: a machine learning approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 1066-1116, December.
    3. Dipankar Bose & A. K. Chatterjee & Samir Barman, 2016. "Towards dominant flexibility configurations in strategic capacity planning under demand uncertainty," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 604-619, September.
    4. Xi Chen & Jiawei Zhang & Yuan Zhou, 2015. "Optimal Sparse Designs for Process Flexibility via Probabilistic Expanders," Operations Research, INFORMS, vol. 63(5), pages 1159-1176, October.
    5. Antoine Désir & Vineet Goyal & Yehua Wei & Jiawei Zhang, 2016. "Sparse Process Flexibility Designs: Is the Long Chain Really Optimal?," Operations Research, INFORMS, vol. 64(2), pages 416-431, April.
    6. Timothy C. Y. Chan & Douglas Fearing, 2019. "Process Flexibility in Baseball: The Value of Positional Flexibility," Management Science, INFORMS, vol. 65(4), pages 1642-1666, April.
    7. Tianhu Deng & Zuo-Jun Max Shen, 2013. "Process Flexibility Design in Unbalanced Networks," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 24-32, April.
    8. Zhen Xu & Hailun Zhang & Jiheng Zhang & Rachel Q. Zhang, 2020. "Online Demand Fulfillment Under Limited Flexibility," Management Science, INFORMS, vol. 66(10), pages 4667-4685, October.
    9. David Simchi-Levi & Yehua Wei, 2015. "Worst-Case Analysis of Process Flexibility Designs," Operations Research, INFORMS, vol. 63(1), pages 166-185, February.
    10. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    11. Soroush Saghafian & Mark P. Van Oyen, 2016. "Compensating for Dynamic Supply Disruptions: Backup Flexibility Design," Operations Research, INFORMS, vol. 64(2), pages 390-405, April.
    12. Mabel C. Chou & Geoffrey A. Chua & Chung-Piaw Teo & Huan Zheng, 2010. "Design for Process Flexibility: Efficiency of the Long Chain and Sparse Structure," Operations Research, INFORMS, vol. 58(1), pages 43-58, February.
    13. Cong Shi & Yehua Wei & Yuan Zhong, 2019. "Process Flexibility for Multiperiod Production Systems," Operations Research, INFORMS, vol. 67(5), pages 1300-1320, September.
    14. Shixin Wang & Xuan Wang & Jiawei Zhang, 2021. "A Review of Flexible Processes and Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1804-1824, June.
    15. Rujeerapaiboon, Napat & Zhong, Yuanguang & Zhu, Dan, 2023. "Resilience of long chain under disruption," European Journal of Operational Research, Elsevier, vol. 309(2), pages 597-615.
    16. Arash Asadpour & Xuan Wang & Jiawei Zhang, 2020. "Online Resource Allocation with Limited Flexibility," Management Science, INFORMS, vol. 66(2), pages 642-666, February.
    17. Fiorotto, Diego Jacinto & Jans, Raf & Alexandre de Araujo, Silvio, 2018. "Process flexibility and the chaining principle in lot sizing problems," International Journal of Production Economics, Elsevier, vol. 204(C), pages 244-263.
    18. Mabel C. Chou & Geoffrey A. Chua & Chung-Piaw Teo & Huan Zheng, 2011. "Process Flexibility Revisited: The Graph Expander and Its Applications," Operations Research, INFORMS, vol. 59(5), pages 1090-1105, October.
    19. Chua, Geoffrey A. & Chen, Shaoxiang & Han, Zhiguang, 2016. "Hub and Chain: Process Flexibility Design in Non-Identical Systems Using Variance Information," European Journal of Operational Research, Elsevier, vol. 253(3), pages 625-638.
    20. Daniel Freund & S'ebastien Martin & Jiayu Kamessi Zhao, 2024. "Two-Sided Flexibility in Platforms," Papers 2404.04709, arXiv.org, revised Nov 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:62:y:2014:i:2:p:348-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.