IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v60y2012i4p981-995.html
   My bibliography  Save this article

Hazard Rate Scaling of the Abandonment Distribution for the GI/M/n + GI Queue in Heavy Traffic

Author

Listed:
  • Josh Reed

    (Stern School of Business, New York University, New York, New York 10012)

  • Tolga Tezcan

    (Simon Graduate School of Business, University of Rochester, Rochester, New York 14627)

Abstract

We obtain a heavy traffic limit for the GI/M/n + GI queue, which includes the entire patience time distribution. Our main approach is to scale the hazard rate function of the patience time distribution in such a way that our resulting diffusion approximation contains the entire hazard rate function. We then show through numerical studies that for various performance measures, our approximations tend to outperform those commonly used in practice. The robustness of our results is also demonstrated by applying them to solving constraint satisfaction problems arising in the context of telephone call centers.

Suggested Citation

  • Josh Reed & Tolga Tezcan, 2012. "Hazard Rate Scaling of the Abandonment Distribution for the GI/M/n + GI Queue in Heavy Traffic," Operations Research, INFORMS, vol. 60(4), pages 981-995, August.
  • Handle: RePEc:inm:oropre:v:60:y:2012:i:4:p:981-995
    DOI: 10.1287/opre.1120.1069
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1120.1069
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1120.1069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. E. Reed & Amy R. Ward, 2008. "Approximating the GI/GI/1+GI Queue with a Nonlinear Drift Diffusion: Hazard Rate Scaling in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 606-644, August.
    2. Avishai Mandelbaum & Petar Momčilović, 2012. "Queues with Many Servers and Impatient Customers," Mathematics of Operations Research, INFORMS, vol. 37(1), pages 41-65, February.
    3. Ward Whitt, 2005. "Engineering Solution of a Basic Call-Center Model," Management Science, INFORMS, vol. 51(2), pages 221-235, February.
    4. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    5. Shlomo Halfin & Ward Whitt, 1981. "Heavy-Traffic Limits for Queues with Many Exponential Servers," Operations Research, INFORMS, vol. 29(3), pages 567-588, June.
    6. J. G. Dai & Shuangchi He, 2010. "Customer Abandonment in Many-Server Queues," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 347-362, May.
    7. Avishai Mandelbaum & Sergey Zeltyn, 2009. "Staffing Many-Server Queues with Impatient Customers: Constraint Satisfaction in Call Centers," Operations Research, INFORMS, vol. 57(5), pages 1189-1205, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junfei Huang & Hanqin Zhang & Jiheng Zhang, 2016. "A Unified Approach to Diffusion Analysis of Queues with General Patience-Time Distributions," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1135-1160, August.
    2. Christos Zacharias & Mor Armony, 2017. "Joint Panel Sizing and Appointment Scheduling in Outpatient Care," Management Science, INFORMS, vol. 63(11), pages 3978-3997, November.
    3. Shuangchi He, 2020. "Diffusion Approximation for Efficiency-Driven Queues When Customers Are Patient," Operations Research, INFORMS, vol. 68(4), pages 1265-1284, July.
    4. Xin Liu, 2019. "Diffusion approximations for double-ended queues with reneging in heavy traffic," Queueing Systems: Theory and Applications, Springer, vol. 91(1), pages 49-87, February.
    5. Yunan Liu & Ward Whitt & Yao Yu, 2016. "Approximations for heavily loaded G/GI/n + GI queues," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(3), pages 187-217, April.
    6. Chihoon Lee & Amy R. Ward & Heng-Qing Ye, 2020. "Stationary distribution convergence of the offered waiting processes for $$GI/GI/1+GI$$GI/GI/1+GI queues in heavy traffic," Queueing Systems: Theory and Applications, Springer, vol. 94(1), pages 147-173, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuangchi He, 2020. "Diffusion Approximation for Efficiency-Driven Queues When Customers Are Patient," Operations Research, INFORMS, vol. 68(4), pages 1265-1284, July.
    2. Jeunghyun Kim & Ramandeep S. Randhawa & Amy R. Ward, 2018. "Dynamic Scheduling in a Many-Server, Multiclass System: The Role of Customer Impatience in Large Systems," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 285-301, May.
    3. Ananda Weerasinghe, 2014. "Diffusion Approximations for G / M / n + GI Queues with State-Dependent Service Rates," Mathematics of Operations Research, INFORMS, vol. 39(1), pages 207-228, February.
    4. Junfei Huang & Avishai Mandelbaum & Hanqin Zhang & Jiheng Zhang, 2017. "Refined Models for Efficiency-Driven Queues with Applications to Delay Announcements and Staffing," Operations Research, INFORMS, vol. 65(5), pages 1380-1397, October.
    5. Jouini, Oualid & Pot, Auke & Koole, Ger & Dallery, Yves, 2010. "Online scheduling policies for multiclass call centers with impatient customers," European Journal of Operational Research, Elsevier, vol. 207(1), pages 258-268, November.
    6. Avishai Mandelbaum & Petar Momčilović, 2012. "Queues with Many Servers and Impatient Customers," Mathematics of Operations Research, INFORMS, vol. 37(1), pages 41-65, February.
    7. Bo Zhang & Johan S. H. van Leeuwaarden & Bert Zwart, 2012. "Staffing Call Centers with Impatient Customers: Refinements to Many-Server Asymptotics," Operations Research, INFORMS, vol. 60(2), pages 461-474, April.
    8. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    9. Itai Gurvich & Ohad Perry, 2012. "Overflow Networks: Approximations and Implications to Call Center Outsourcing," Operations Research, INFORMS, vol. 60(4), pages 996-1009, August.
    10. Xin Liu, 2019. "Diffusion approximations for double-ended queues with reneging in heavy traffic," Queueing Systems: Theory and Applications, Springer, vol. 91(1), pages 49-87, February.
    11. Francis de Véricourt & Otis B. Jennings, 2008. "Dimensioning Large-Scale Membership Services," Operations Research, INFORMS, vol. 56(1), pages 173-187, February.
    12. Hongyuan Lu & Guodong Pang & Yuhang Zhou, 2016. "$$G/{ GI}/N(+{ GI})$$ G / G I / N ( + G I ) queues with service interruptions in the Halfin–Whitt regime," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 127-160, February.
    13. A. J. E. M. Janssen & J. S. H. van Leeuwaarden & Bert Zwart, 2011. "Refining Square-Root Safety Staffing by Expanding Erlang C," Operations Research, INFORMS, vol. 59(6), pages 1512-1522, December.
    14. Saif Benjaafar & Shining Wu & Hanlin Liu & Einar Bjarki Gunnarsson, 2022. "Dimensioning On-Demand Vehicle Sharing Systems," Management Science, INFORMS, vol. 68(2), pages 1218-1232, February.
    15. Burak Büke & Hanyi Chen, 2017. "Fluid and diffusion approximations of probabilistic matching systems," Queueing Systems: Theory and Applications, Springer, vol. 86(1), pages 1-33, June.
    16. Guodong Pang & Ohad Perry, 2015. "A Logarithmic Safety Staffing Rule for Contact Centers with Call Blending," Management Science, INFORMS, vol. 61(1), pages 73-91, January.
    17. Max Tschaikowski & Mirco Tribastone, 2017. "A computational approach to steady-state convergence of fluid limits for Coxian queuing networks with abandonment," Annals of Operations Research, Springer, vol. 252(1), pages 101-120, May.
    18. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    19. Opher Baron & Joseph Milner, 2009. "Staffing to Maximize Profit for Call Centers with Alternate Service-Level Agreements," Operations Research, INFORMS, vol. 57(3), pages 685-700, June.
    20. Mor Armony & Avishai Mandelbaum, 2011. "Routing and Staffing in Large-Scale Service Systems: The Case of Homogeneous Impatient Customers and Heterogeneous Servers," Operations Research, INFORMS, vol. 59(1), pages 50-65, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:60:y:2012:i:4:p:981-995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.