IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v91y2019i1d10.1007_s11134-018-9589-7.html
   My bibliography  Save this article

Diffusion approximations for double-ended queues with reneging in heavy traffic

Author

Listed:
  • Xin Liu

    (Clemson University)

Abstract

We study a double-ended queue consisting of two classes of customers. Whenever there is a pair of customers from both classes, they are matched and leave the system. The matching is instantaneous following the first-come–first-match principle. If a customer cannot be matched immediately, he/she will stay in a queue. We also assume customers are impatient with generally distributed patience times. Under suitable heavy traffic conditions, we establish simple linear asymptotic relationships between the diffusion-scaled queue length process and the diffusion-scaled offered waiting time processes and show that the diffusion-scaled queue length process converges weakly to a diffusion process that admits a unique stationary distribution.

Suggested Citation

  • Xin Liu, 2019. "Diffusion approximations for double-ended queues with reneging in heavy traffic," Queueing Systems: Theory and Applications, Springer, vol. 91(1), pages 49-87, February.
  • Handle: RePEc:spr:queues:v:91:y:2019:i:1:d:10.1007_s11134-018-9589-7
    DOI: 10.1007/s11134-018-9589-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-018-9589-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-018-9589-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. E. Reed & Amy R. Ward, 2008. "Approximating the GI/GI/1+GI Queue with a Nonlinear Drift Diffusion: Hazard Rate Scaling in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 606-644, August.
    2. Avishai Mandelbaum & Petar Momčilović, 2012. "Queues with Many Servers and Impatient Customers," Mathematics of Operations Research, INFORMS, vol. 37(1), pages 41-65, February.
    3. James M. Dobbie, 1961. "Letter to the Editor---A Doubled-Ended Queuing Problem of Kendall," Operations Research, INFORMS, vol. 9(5), pages 755-757, October.
    4. David Perry & Wolfgang Stadje, 1999. "Perishable inventory systems with impatient demands," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(1), pages 77-90, August.
    5. J. G. Dai & Shuangchi He, 2010. "Customer Abandonment in Many-Server Queues," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 347-362, May.
    6. B. R. K. Kashyap, 1966. "The Double-Ended Queue with Bulk Service and Limited Waiting Space," Operations Research, INFORMS, vol. 14(5), pages 822-834, October.
    7. Josh Reed & Tolga Tezcan, 2012. "Hazard Rate Scaling of the Abandonment Distribution for the GI/M/n + GI Queue in Heavy Traffic," Operations Research, INFORMS, vol. 60(4), pages 981-995, August.
    8. Amarjit Budhiraja & Chihoon Lee, 2009. "Stationary Distribution Convergence for Generalized Jackson Networks in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 45-56, February.
    9. Lee, Chihoon & Weerasinghe, Ananda, 2011. "Convergence of a queueing system in heavy traffic with general patience-time distributions," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2507-2552, November.
    10. Philipp Afèche & Adam Diamant & Joseph Milner, 2014. "Double-Sided Batch Queues with Abandonment: Modeling Crossing Networks," Operations Research, INFORMS, vol. 62(5), pages 1179-1201, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heng-Li Liu & Quan-Lin Li, 2023. "Matched Queues with Flexible and Impatient Customers," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junfei Huang & Hanqin Zhang & Jiheng Zhang, 2016. "A Unified Approach to Diffusion Analysis of Queues with General Patience-Time Distributions," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1135-1160, August.
    2. Shuangchi He, 2020. "Diffusion Approximation for Efficiency-Driven Queues When Customers Are Patient," Operations Research, INFORMS, vol. 68(4), pages 1265-1284, July.
    3. Chihoon Lee & Amy R. Ward & Heng-Qing Ye, 2020. "Stationary distribution convergence of the offered waiting processes for $$GI/GI/1+GI$$GI/GI/1+GI queues in heavy traffic," Queueing Systems: Theory and Applications, Springer, vol. 94(1), pages 147-173, February.
    4. Christos Zacharias & Mor Armony, 2017. "Joint Panel Sizing and Appointment Scheduling in Outpatient Care," Management Science, INFORMS, vol. 63(11), pages 3978-3997, November.
    5. Burak Büke & Hanyi Chen, 2017. "Fluid and diffusion approximations of probabilistic matching systems," Queueing Systems: Theory and Applications, Springer, vol. 86(1), pages 1-33, June.
    6. Chihoon Lee & Amy R. Ward & Heng-Qing Ye, 2021. "Stationary distribution convergence of the offered waiting processes in heavy traffic under general patience time scaling," Queueing Systems: Theory and Applications, Springer, vol. 99(3), pages 283-303, December.
    7. Ananda Weerasinghe, 2014. "Diffusion Approximations for G / M / n + GI Queues with State-Dependent Service Rates," Mathematics of Operations Research, INFORMS, vol. 39(1), pages 207-228, February.
    8. Yang, Qiaoli & Yang, Bo & Qiao, Zheng & Tang, Min-an & Gao, Fengyang, 2021. "Impact of possible random factors on queue behaviors of passengers and taxis at taxi stand of transport hubs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    9. Lu Wang & Vidyadhar Kulkarni, 2020. "Fluid and diffusion models for a system of taxis and customers with delayed matching," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 101-131, October.
    10. Philipp Afèche & Adam Diamant & Joseph Milner, 2014. "Double-Sided Batch Queues with Abandonment: Modeling Crossing Networks," Operations Research, INFORMS, vol. 62(5), pages 1179-1201, October.
    11. Josh Reed & Tolga Tezcan, 2012. "Hazard Rate Scaling of the Abandonment Distribution for the GI/M/n + GI Queue in Heavy Traffic," Operations Research, INFORMS, vol. 60(4), pages 981-995, August.
    12. Jeunghyun Kim & Ramandeep S. Randhawa & Amy R. Ward, 2018. "Dynamic Scheduling in a Many-Server, Multiclass System: The Role of Customer Impatience in Large Systems," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 285-301, May.
    13. Gideon Weiss, 2020. "Directed FCFS infinite bipartite matching," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 387-418, December.
    14. Yang, Qiaoli & Qiao, Zheng & Yang, Bo & Shi, Zhongke, 2021. "Modeling and uncovering the passenger–taxi dynamic queues at taxi station with multiple boarding points using a Markovian environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    15. Hongyuan Lu & Guodong Pang & Yuhang Zhou, 2016. "$$G/{ GI}/N(+{ GI})$$ G / G I / N ( + G I ) queues with service interruptions in the Halfin–Whitt regime," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 127-160, February.
    16. Yiwei Chen & Ming Hu, 2020. "Pricing and Matching with Forward-Looking Buyers and Sellers," Manufacturing & Service Operations Management, INFORMS, vol. 22(4), pages 717-734, July.
    17. Ying Shi & Zhaotong Lian, 2016. "Equilibrium Strategies and Optimal Control for a Double-Ended Queue," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-18, June.
    18. Junfei Huang & Avishai Mandelbaum & Hanqin Zhang & Jiheng Zhang, 2017. "Refined Models for Efficiency-Driven Queues with Applications to Delay Announcements and Staffing," Operations Research, INFORMS, vol. 65(5), pages 1380-1397, October.
    19. A. Korhan Aras & Xinyun Chen & Yunan Liu, 2018. "Many-server Gaussian limits for overloaded non-Markovian queues with customer abandonment," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 81-125, June.
    20. Lee, Chihoon & Weerasinghe, Ananda, 2011. "Convergence of a queueing system in heavy traffic with general patience-time distributions," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2507-2552, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:91:y:2019:i:1:d:10.1007_s11134-018-9589-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.