IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v55y2007i6p1072-1089.html
   My bibliography  Save this article

Supply Chain Scheduling: Conflict and Cooperation in Assembly Systems

Author

Listed:
  • Zhi-Long Chen

    (Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742-1815)

  • Nicholas G. Hall

    (Fisher College of Business, The Ohio State University, Columbus, Ohio 43210-1144)

Abstract

We study conflict and cooperation issues in supply chain manufacturing. Consider an assembly system where suppliers provide parts to a manufacturer. A product cannot be delivered until all its parts have been supplied. The manufacturer performs nonbottleneck operations, for example, outsourced assembly, packaging, and delivery for each product. Two classical scheduling objectives are considered: minimization of the total completion time and of the maximum lateness. We analyze how far from optimal the best schedule for a suppliers' scheduling problem can be for the corresponding manufacturer's problem, and vice versa. To resolve these conflicts, we consider four alternative scenarios for the relative bargaining power of the suppliers and the manufacturer, and in each case describe a practical mechanism for cooperation between the decision makers. Evaluating the cost of conflict and the benefit of cooperation in these scenarios requires the solution of various scheduling problems by the suppliers, the manufacturer, and the overall system. For all these scheduling problems, we provide either an efficient algorithm or a proof of intractability. Moreover, for two problems that we show are intractable, we describe heuristics and analyze their worst case performance or demonstrate asymptotic optimality of their solutions. We demonstrate computationally that the cost saving realized by cooperation between the decision makers is significant in many cases. Extensions of our models to consider bottleneck operations at the manufacturer and transportation times are also developed.

Suggested Citation

  • Zhi-Long Chen & Nicholas G. Hall, 2007. "Supply Chain Scheduling: Conflict and Cooperation in Assembly Systems," Operations Research, INFORMS, vol. 55(6), pages 1072-1089, December.
  • Handle: RePEc:inm:oropre:v:55:y:2007:i:6:p:1072-1089
    DOI: 10.1287/opre.1070.0412
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1070.0412
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1070.0412?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nash, John, 1953. "Two-Person Cooperative Games," Econometrica, Econometric Society, vol. 21(1), pages 128-140, April.
    2. Koulamas, C & Antony, SR & Jaen, R, 1994. "A survey of simulated annealing applications to operations research problems," Omega, Elsevier, vol. 22(1), pages 41-56, January.
    3. Daniel E. Lane & Jeffrey B. Sidney, 1993. "Batching and Scheduling in FMS Hubs: Flow Time Considerations," Operations Research, INFORMS, vol. 41(6), pages 1091-1103, December.
    4. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    5. Chung-Yee Lee & T. C. E. Cheng & B. M. T. Lin, 1993. "Minimizing the Makespan in the 3-Machine Assembly-Type Flowshop Scheduling Problem," Management Science, INFORMS, vol. 39(5), pages 616-625, May.
    6. Srinagesh Gavirneni & Roman Kapuscinski & Sridhar Tayur, 1999. "Value of Information in Capacitated Supply Chains," Management Science, INFORMS, vol. 45(1), pages 16-24, January.
    7. C. N. Potts & S. V. Sevast'janov & V. A. Strusevich & L. N. Van Wassenhove & C. M. Zwaneveld, 1995. "The Two-Stage Assembly Scheduling Problem: Complexity and Approximation," Operations Research, INFORMS, vol. 43(2), pages 346-355, April.
    8. C T Daniel Ng & T C E Cheng & M Y Kovalyov, 2003. "Batch scheduling with controllable setup and processing times to minimize total completion time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(5), pages 499-506, May.
    9. Nicholas G. Hall & Chris N. Potts, 2003. "Supply chain scheduling: Batching and delivery," Operations Research, INFORMS, vol. 51(4), pages 566-584, August.
    10. Thomas, Douglas J. & Griffin, Paul M., 1996. "Coordinated supply chain management," European Journal of Operational Research, Elsevier, vol. 94(1), pages 1-15, October.
    11. Philip Kaminsky & David Simchi-Levi, 1998. "Probabilistic Analysis and Practical Algorithms for the Flow Shop Weighted Completion Time Problem," Operations Research, INFORMS, vol. 46(6), pages 872-882, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esaignani Selvarajah & Rui Zhang, 2014. "Supply chain scheduling to minimize holding costs with outsourcing," Annals of Operations Research, Springer, vol. 217(1), pages 479-490, June.
    2. Boysen, Nils & Scholl, Armin & Wopperer, Nico, 2012. "Resequencing of mixed-model assembly lines: Survey and research agenda," European Journal of Operational Research, Elsevier, vol. 216(3), pages 594-604.
    3. Zhisong Chen & Xiaoying Niu & Qingwu Gao & Jun Wang, 2024. "Bilateral shock effect and alleviation strategy: a game-theoretical study in international medical devices supply chain in the pandemic context," Operational Research, Springer, vol. 24(2), pages 1-37, June.
    4. Zhang, Jian & Nault, Barrie R., 2023. "Information sharing in an MTO supply chain with upstream adjustments," European Journal of Operational Research, Elsevier, vol. 308(1), pages 97-112.
    5. Averbakh, Igor, 2010. "On-line integrated production-distribution scheduling problems with capacitated deliveries," European Journal of Operational Research, Elsevier, vol. 200(2), pages 377-384, January.
    6. Agnetis, Alessandro & Aloulou, Mohamed Ali & Fu, Liang-Liang, 2014. "Coordination of production and interstage batch delivery with outsourced distribution," European Journal of Operational Research, Elsevier, vol. 238(1), pages 130-142.
    7. Lei, Lei & Lee, Kangbok & Dong, Hui, 2016. "A heuristic for emergency operations scheduling with lead times and tardiness penalties," European Journal of Operational Research, Elsevier, vol. 250(3), pages 726-736.
    8. Yuan Zhang & Jinjiang Yuan, 2021. "A note on the complexity of two supply chain scheduling problems," Journal of Scheduling, Springer, vol. 24(4), pages 447-454, August.
    9. Dongyang Wang & Kumar Muthuraman & Douglas Morrice, 2019. "Coordinated Patient Appointment Scheduling for a Multistation Healthcare Network," Operations Research, INFORMS, vol. 67(3), pages 599-618, May.
    10. José R. Correa & Martin Skutella & José Verschae, 2012. "The Power of Preemption on Unrelated Machines and Applications to Scheduling Orders," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 379-398, May.
    11. Esaignani Selvarajah & George Steiner, 2009. "Approximation Algorithms for the Supplier's Supply Chain Scheduling Problem to Minimize Delivery and Inventory Holding Costs," Operations Research, INFORMS, vol. 57(2), pages 426-438, April.
    12. Tülin İnkaya & Mehmet Akansel, 2017. "Coordinated scheduling of the transfer lots in an assembly-type supply chain: a genetic algorithm approach," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 1005-1015, April.
    13. Cheng, Ba-Yi & Leung, Joseph Y-T. & Li, Kai, 2017. "Integrated scheduling on a batch machine to minimize production, inventory and distribution costs," European Journal of Operational Research, Elsevier, vol. 258(1), pages 104-112.
    14. Weihua Liu & Yi Yang & Shuqing Wang & Enze Bai, 2017. "A scheduling model of logistics service supply chain based on the time windows of the FLSP’s operation and customer requirement," Annals of Operations Research, Springer, vol. 257(1), pages 183-206, October.
    15. Marzanna Katarzyna Witek-Hajduk & Anna Napiórkowska, 2017. "A Framework of Retailer-Manufacturer Cooperation and Coopetition: Consumer Durable Goods Retailers’ Case Studies," Entrepreneurial Business and Economics Review, Centre for Strategic and International Entrepreneurship at the Cracow University of Economics., vol. 5(1), pages 59-76.
    16. Jun Pei & Xinbao Liu & Panos M. Pardalos & Wenjuan Fan & Ling Wang & Shanlin Yang, 2016. "Solving a supply chain scheduling problem with non-identical job sizes and release times by applying a novel effective heuristic algorithm," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(4), pages 765-776, March.
    17. Nicholas G. Hall & Zhixin Liu, 2010. "Capacity Allocation and Scheduling in Supply Chains," Operations Research, INFORMS, vol. 58(6), pages 1711-1725, December.
    18. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    19. Ehie, Ike C., 2010. "The impact of conflict on manufacturing decisions and company performance," International Journal of Production Economics, Elsevier, vol. 126(2), pages 145-157, August.
    20. Singh, Gaurav & Sier, David & Ernst, Andreas T. & Gavriliouk, Olena & Oyston, Rob & Giles, Tracey & Welgama, Palitha, 2012. "A mixed integer programming model for long term capacity expansion planning: A case study from The Hunter Valley Coal Chain," European Journal of Operational Research, Elsevier, vol. 220(1), pages 210-224.
    21. Kurz, Julian, 2016. "Capacity planning for a maintenance service provider with advanced information," European Journal of Operational Research, Elsevier, vol. 251(2), pages 466-477.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tülin İnkaya & Mehmet Akansel, 2017. "Coordinated scheduling of the transfer lots in an assembly-type supply chain: a genetic algorithm approach," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 1005-1015, April.
    2. Nicholas G. Hall & Chris N. Potts, 2003. "Supply chain scheduling: Batching and delivery," Operations Research, INFORMS, vol. 51(4), pages 566-584, August.
    3. U. Manoj & Jatinder Gupta & Sushil Gupta & Chelliah Sriskandarajah, 2008. "Supply chain scheduling: Just-in-time environment," Annals of Operations Research, Springer, vol. 161(1), pages 53-86, July.
    4. Guth, Werner & Ritzberger, Klaus & van Damme, Eric, 2004. "On the Nash bargaining solution with noise," European Economic Review, Elsevier, vol. 48(3), pages 697-713, June.
    5. Dinar, Ariel, 1989. "Application of the Nash Bargaining Model to a Problem of Efficient Resources Use and Cost-Benefit Allocation," 1989 Annual Meeting, July 30-August 2, Baton Rouge, Louisiana 270685, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Volodymyr Babich & Simone Marinesi & Gerry Tsoukalas, 2021. "Does Crowdfunding Benefit Entrepreneurs and Venture Capital Investors?," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 508-524, March.
    7. Ley, Eduardo, 2006. "Statistical inference as a bargaining game," Economics Letters, Elsevier, vol. 93(1), pages 142-149, October.
    8. Park, Moon-Won & Kim, Yeong-Dae, 2000. "A branch and bound algorithm for a production scheduling problem in an assembly system under due date constraints," European Journal of Operational Research, Elsevier, vol. 123(3), pages 504-518, June.
    9. Yu, Shasha & Lei, Ming & Deng, Honghui, 2023. "Evaluation to fixed-sum-outputs DMUs by non-oriented equilibrium efficient frontier DEA approach with Nash bargaining-based selection," Omega, Elsevier, vol. 115(C).
    10. George L. Vairaktarakis, 2003. "The Value of Resource Flexibility in the Resource-Constrained Job Assignment Problem," Management Science, INFORMS, vol. 49(6), pages 718-732, June.
    11. repec:eee:labchp:v:2:y:1986:i:c:p:1039-1089 is not listed on IDEAS
    12. Yashiv, Eran, 2007. "Labor search and matching in macroeconomics," European Economic Review, Elsevier, vol. 51(8), pages 1859-1895, November.
    13. Güth, Werner, 1998. "Sequential versus independent commitment: An indirect evolutionary analysis of bargaining rules," SFB 373 Discussion Papers 1998,5, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    14. Iraklis Kollias & John Leventides & Vassilios G. Papavassiliou, 2024. "On the solution of games with arbitrary payoffs: An application to an over‐the‐counter financial market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1877-1895, April.
    15. van Damme, E.E.C., 2000. "John Nash and the analysis of rational behavior," Other publications TiSEM cf34a879-fd1c-4588-9646-7, Tilburg University, School of Economics and Management.
    16. Takeuchi, Ai & Veszteg, Róbert F. & Kamijo, Yoshio & Funaki, Yukihiko, 2022. "Bargaining over a jointly produced pie: The effect of the production function on bargaining outcomes," Games and Economic Behavior, Elsevier, vol. 134(C), pages 169-198.
    17. Lili Liu & Guochun Tang & Baoqiang Fan & Xingpeng Wang, 2015. "Two-person cooperative games on scheduling problems in outpatient pharmacy dispensing process," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 938-948, November.
    18. Naeve-Steinweg, Elisabeth, 2002. "Mechanisms supporting the Kalai-Smorodinsky solution," Mathematical Social Sciences, Elsevier, vol. 44(1), pages 25-36, September.
    19. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    20. Hwang, Sung-Ha & Rey-Bellet, Luc, 2021. "Positive feedback in coordination games: Stochastic evolutionary dynamics and the logit choice rule," Games and Economic Behavior, Elsevier, vol. 126(C), pages 355-373.
    21. Vesa Kanniainen & Juha-Matti Lehtonen, 2019. "Offset Contracts as an Insurance Device in Building the National Security," Defence and Peace Economics, Taylor & Francis Journals, vol. 30(1), pages 85-97, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:55:y:2007:i:6:p:1072-1089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.