IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v51y2003i6p981-992.html
   My bibliography  Save this article

Decompositions, Network Flows, and a Precedence Constrained Single-Machine Scheduling Problem

Author

Listed:
  • François Margot

    (GSIA, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213)

  • Maurice Queyranne

    (Faculty of Commerce, University of British Columbia, Vancouver, British Columbia, Canada)

  • Yaoguang Wang

    (PeopleSoft, Inc., Pleasanton, California 94566)

Abstract

We present an in-depth theoretical, algorithmic, and computational study of a linear programming (LP) relaxation to the precedence constrained single-machine scheduling problem 1|prec|(Sigma) j w j C j to minimize a weighted sum of job completion times. On the theoretical side, we study the structure of tight parallel inequalities in the LP relaxation and show that every permutation schedule that is consistent with Sidney's decomposition has total cost no more than twice the optimum. On the algorithmic side, we provide a parametric extension to Sidney's decomposition and show that a finest decomposition can be obtained by essentially solving a parametric minimum-cut problem. Finally, we report results obtained by an algorithm based on these developments on randomly generated instances with up to 2,000 jobs.

Suggested Citation

  • François Margot & Maurice Queyranne & Yaoguang Wang, 2003. "Decompositions, Network Flows, and a Precedence Constrained Single-Machine Scheduling Problem," Operations Research, INFORMS, vol. 51(6), pages 981-992, December.
  • Handle: RePEc:inm:oropre:v:51:y:2003:i:6:p:981-992
    DOI: 10.1287/opre.51.6.981.24912
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.51.6.981.24912
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.51.6.981.24912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey B. Sidney, 1975. "Decomposition Algorithms for Single-Machine Sequencing with Precedence Relations and Deferral Costs," Operations Research, INFORMS, vol. 23(2), pages 283-298, April.
    2. Maurice Queyranne & Yaoguang Wang, 1991. "Single-Machine Scheduling Polyhedra with Precedence Constraints," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 1-20, February.
    3. Leslie A. Hall & Andreas S. Schulz & David B. Shmoys & Joel Wein, 1997. "Scheduling to Minimize Average Completion Time: Off-Line and On-Line Approximation Algorithms," Mathematics of Operations Research, INFORMS, vol. 22(3), pages 513-544, August.
    4. C. N. Potts, 1985. "A Lagrangean Based Branch and Bound Algorithm for Single Machine Sequencing with Precedence Constraints to Minimize Total Weighted Completion Time," Management Science, INFORMS, vol. 31(10), pages 1300-1311, October.
    5. Jean-Claude Picard, 1976. "Maximal Closure of a Graph and Applications to Combinatorial Problems," Management Science, INFORMS, vol. 22(11), pages 1268-1272, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José R. Correa & Martin Skutella & José Verschae, 2012. "The Power of Preemption on Unrelated Machines and Applications to Scheduling Orders," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 379-398, May.
    2. Robbert Fokkink & Thomas Lidbetter & László A. Végh, 2019. "On Submodular Search and Machine Scheduling," Management Science, INFORMS, vol. 44(4), pages 1431-1449, November.
    3. Tanaka, Shunji & Sato, Shun, 2013. "An exact algorithm for the precedence-constrained single-machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 345-352.
    4. Rostami, Salim & Creemers, Stefan & Leus, Roel, 2019. "Precedence theorems and dynamic programming for the single-machine weighted tardiness problem," European Journal of Operational Research, Elsevier, vol. 272(1), pages 43-49.
    5. José R. Correa & Andreas S. Schulz, 2005. "Single-Machine Scheduling with Precedence Constraints," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1005-1021, November.
    6. Andreas S. Schulz & Nelson A. Uhan, 2011. "Near-Optimal Solutions and Large Integrality Gaps for Almost All Instances of Single-Machine Precedence-Constrained Scheduling," Mathematics of Operations Research, INFORMS, vol. 36(1), pages 14-23, February.
    7. Felix Happach & Lisa Hellerstein & Thomas Lidbetter, 2022. "A General Framework for Approximating Min Sum Ordering Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1437-1452, May.
    8. Christoph Ambühl & Monaldo Mastrolilli & Nikolaus Mutsanas & Ola Svensson, 2011. "On the Approximability of Single-Machine Scheduling with Precedence Constraints," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 653-669, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José R. Correa & Andreas S. Schulz, 2005. "Single-Machine Scheduling with Precedence Constraints," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1005-1021, November.
    2. P. Detti & D. Pacciarelli, 2001. "A branch and bound algorithm for the minimum storage‐time sequencing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(4), pages 313-331, June.
    3. Andreas S. Schulz & Nelson A. Uhan, 2011. "Near-Optimal Solutions and Large Integrality Gaps for Almost All Instances of Single-Machine Precedence-Constrained Scheduling," Mathematics of Operations Research, INFORMS, vol. 36(1), pages 14-23, February.
    4. Ben Hermans & Roel Leus & Jannik Matuschke, 2022. "Exact and Approximation Algorithms for the Expanding Search Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 281-296, January.
    5. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    6. Robbert Fokkink & Thomas Lidbetter & László A. Végh, 2019. "On Submodular Search and Machine Scheduling," Management Science, INFORMS, vol. 44(4), pages 1431-1449, November.
    7. Chung, Chia-Shin & Flynn, James & Kirca, Omer, 2002. "A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems," International Journal of Production Economics, Elsevier, vol. 79(3), pages 185-196, October.
    8. Christoph Ambühl & Monaldo Mastrolilli & Nikolaus Mutsanas & Ola Svensson, 2011. "On the Approximability of Single-Machine Scheduling with Precedence Constraints," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 653-669, November.
    9. Rostami, Salim & Creemers, Stefan & Leus, Roel, 2019. "Precedence theorems and dynamic programming for the single-machine weighted tardiness problem," European Journal of Operational Research, Elsevier, vol. 272(1), pages 43-49.
    10. van den Akker, J.M. & Savelsbergh, M.W.P. & van Hoesel, C.P.M., 1997. "A polyhedral approach to single-machine scheduling problems," Research Memorandum 002, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    11. Prahalad Venkateshan & Joseph Szmerekovsky & George Vairaktarakis, 2020. "A cutting plane approach for the multi-machine precedence-constrained scheduling problem," Annals of Operations Research, Springer, vol. 285(1), pages 247-271, February.
    12. Tanaka, Shunji & Sato, Shun, 2013. "An exact algorithm for the precedence-constrained single-machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 345-352.
    13. Rafael Epstein & Marcel Goic & Andrés Weintraub & Jaime Catalán & Pablo Santibáñez & Rodolfo Urrutia & Raúl Cancino & Sergio Gaete & Augusto Aguayo & Felipe Caro, 2012. "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines," Operations Research, INFORMS, vol. 60(1), pages 4-17, February.
    14. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    15. Büsing, Christina & Goetzmann, Kai-Simon & Matuschke, Jannik & Stiller, Sebastian, 2017. "Reference points and approximation algorithms in multicriteria discrete optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 829-840.
    16. Chatterjee, Snehamoy & Sethi, Manas Ranjan & Asad, Mohammad Waqar Ali, 2016. "Production phase and ultimate pit limit design under commodity price uncertainty," European Journal of Operational Research, Elsevier, vol. 248(2), pages 658-667.
    17. Patrick Jaillet & Michael R. Wagner, 2006. "Online Routing Problems: Value of Advanced Information as Improved Competitive Ratios," Transportation Science, INFORMS, vol. 40(2), pages 200-210, May.
    18. Martin Skutella & Maxim Sviridenko & Marc Uetz, 2016. "Unrelated Machine Scheduling with Stochastic Processing Times," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 851-864, August.
    19. Dimitris Fotakis & Jannik Matuschke & Orestis Papadigenopoulos, 2023. "Malleable scheduling beyond identical machines," Journal of Scheduling, Springer, vol. 26(5), pages 425-442, October.
    20. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni, 2023. "A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context," Resources Policy, Elsevier, vol. 83(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:51:y:2003:i:6:p:981-992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.