IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v48y2001i4p313-331.html
   My bibliography  Save this article

A branch and bound algorithm for the minimum storage‐time sequencing problem

Author

Listed:
  • P. Detti
  • D. Pacciarelli

Abstract

The minimum storage‐time sequencing problem generalizes many well‐known problems in combinatorial optimization, such as the directed linear arrangement and the problem of minimizing the weighted sum of completion times, subject to precedence constraints on a single processor. In this paper we propose a new lower bound, based on a Lagrangian relaxation, which can be computed very efficiently. To improve upon this lower bound, we employ a bundle optimization algorithm. We also show that the best bound obtainable by this approach equals the one obtainable from the linear relaxation computed on a formulation whose first Chvàtal closure equals the convex hull of all the integer solutions of the problem. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 313–331, 2001

Suggested Citation

  • P. Detti & D. Pacciarelli, 2001. "A branch and bound algorithm for the minimum storage‐time sequencing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(4), pages 313-331, June.
  • Handle: RePEc:wly:navres:v:48:y:2001:i:4:p:313-331
    DOI: 10.1002/nav.11
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.11
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.11?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas E. Morton & Bala Ganga Dharan, 1978. "Algoristics for Single-Machine Sequencing with Precedence Constraints," Management Science, INFORMS, vol. 24(10), pages 1011-1020, June.
    2. E. L. Lawler, 1973. "Optimal Sequencing of a Single Machine Subject to Precedence Constraints," Management Science, INFORMS, vol. 19(5), pages 544-546, January.
    3. Leung, J. & Lee, J., 1994. "More facets from fences for linear ordering and acyclic subgraph polytopes," LIDAM Reprints CORE 1087, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Jeffrey B. Sidney, 1975. "Decomposition Algorithms for Single-Machine Sequencing with Precedence Relations and Deferral Costs," Operations Research, INFORMS, vol. 23(2), pages 283-298, April.
    5. Maurice Queyranne & Yaoguang Wang, 1991. "Single-Machine Scheduling Polyhedra with Precedence Constraints," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 1-20, February.
    6. Martin Grötschel & Michael Jünger & Gerhard Reinelt, 1984. "A Cutting Plane Algorithm for the Linear Ordering Problem," Operations Research, INFORMS, vol. 32(6), pages 1195-1220, December.
    7. C. N. Potts, 1985. "A Lagrangean Based Branch and Bound Algorithm for Single Machine Sequencing with Precedence Constraints to Minimize Total Weighted Completion Time," Management Science, INFORMS, vol. 31(10), pages 1300-1311, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. François Margot & Maurice Queyranne & Yaoguang Wang, 2003. "Decompositions, Network Flows, and a Precedence Constrained Single-Machine Scheduling Problem," Operations Research, INFORMS, vol. 51(6), pages 981-992, December.
    2. Chung, Chia-Shin & Flynn, James & Kirca, Omer, 2002. "A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems," International Journal of Production Economics, Elsevier, vol. 79(3), pages 185-196, October.
    3. Rostami, Salim & Creemers, Stefan & Leus, Roel, 2019. "Precedence theorems and dynamic programming for the single-machine weighted tardiness problem," European Journal of Operational Research, Elsevier, vol. 272(1), pages 43-49.
    4. Irène Charon & Olivier Hudry, 2010. "An updated survey on the linear ordering problem for weighted or unweighted tournaments," Annals of Operations Research, Springer, vol. 175(1), pages 107-158, March.
    5. Prahalad Venkateshan & Joseph Szmerekovsky & George Vairaktarakis, 2020. "A cutting plane approach for the multi-machine precedence-constrained scheduling problem," Annals of Operations Research, Springer, vol. 285(1), pages 247-271, February.
    6. Ben Hermans & Roel Leus & Jannik Matuschke, 2022. "Exact and Approximation Algorithms for the Expanding Search Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 281-296, January.
    7. W. Art Chaovalitwongse & Carlos A. S. Oliveira & Bruno Chiarini & Panos M. Pardalos & Mauricio G. C. Resende, 2011. "Revised GRASP with path-relinking for the linear ordering problem," Journal of Combinatorial Optimization, Springer, vol. 22(4), pages 572-593, November.
    8. Andreas S. Schulz & Nelson A. Uhan, 2011. "Near-Optimal Solutions and Large Integrality Gaps for Almost All Instances of Single-Machine Precedence-Constrained Scheduling," Mathematics of Operations Research, INFORMS, vol. 36(1), pages 14-23, February.
    9. Tanaka, Shunji & Sato, Shun, 2013. "An exact algorithm for the precedence-constrained single-machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 345-352.
    10. Jose Apesteguia & Miguel A. Ballester, 2015. "A Measure of Rationality and Welfare," Journal of Political Economy, University of Chicago Press, vol. 123(6), pages 1278-1310.
    11. Ramachandra, Girish & Elmaghraby, Salah E., 2006. "Sequencing precedence-related jobs on two machines to minimize the weighted completion time," International Journal of Production Economics, Elsevier, vol. 100(1), pages 44-58, March.
    12. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    13. Reha Uzsoy & Chung‐Yee Lee & Louis A. Martin‐Vega, 1992. "Scheduling semiconductor test operations: Minimizing maximum lateness and number of tardy jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 369-388, April.
    14. Miles William W & Fowks Gary T & Coulter Lisa O, 2010. "AccuV College Football Ranking Model," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(3), pages 1-17, July.
    15. Adam Kasperski & Paweł Zieliński, 2019. "Risk-averse single machine scheduling: complexity and approximation," Journal of Scheduling, Springer, vol. 22(5), pages 567-580, October.
    16. Akbari, Sina & Escobedo, Adolfo R., 2023. "Beyond kemeny rank aggregation: A parameterizable-penalty framework for robust ranking aggregation with ties," Omega, Elsevier, vol. 119(C).
    17. Jiang, Xiaojuan & Lee, Kangbok & Pinedo, Michael L., 2021. "Ideal schedules in parallel machine settings," European Journal of Operational Research, Elsevier, vol. 290(2), pages 422-434.
    18. Zhichao Geng & Jiayu Liu, 0. "Single machine batch scheduling with two non-disjoint agents and splitable jobs," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-22.
    19. Potts, C. N. & Whitehead, J. D., 2001. "Workload balancing and loop layout in the design of a flexible manufacturing system," European Journal of Operational Research, Elsevier, vol. 129(2), pages 326-336, March.
    20. Manfred Padberg, 2005. "Classical Cuts for Mixed-Integer Programming and Branch-and-Cut," Annals of Operations Research, Springer, vol. 139(1), pages 321-352, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:48:y:2001:i:4:p:313-331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.