IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v49y2001i1p42-51.html
   My bibliography  Save this article

Optimal Design of Truss Structures by Logic-Based Branch and Cut

Author

Listed:
  • S. Bollapragada

    (Information Technology Laboratory, General Electric Corporate Research and Development, Schenectady, New York 12301)

  • O. Ghattas

    (Civil and Environmental Engineering Department, Carnegie Mellon University, Pittsburgh, Pensylvania 15213)

  • J. N. Hooker

    (Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

Abstract

The truss design problem is to find the optimal placement and size of structural bars that can support a given load. The problem is nonlinear and, in the version addressed here, the bars must take certain discrete sizes. It is shown that a logic-based method that dispenses with integer variables and branches directly on logical disjunctions can solve substantially larger problems than mixed integer programming, even though the nonlinearities disappear in the mixed integer model. A primary purpose of the paper is to investigate whether advantages of logic-based branching that have been demonstrated elsewhere for linear problems extend to nonlinear programming.

Suggested Citation

  • S. Bollapragada & O. Ghattas & J. N. Hooker, 2001. "Optimal Design of Truss Structures by Logic-Based Branch and Cut," Operations Research, INFORMS, vol. 49(1), pages 42-51, February.
  • Handle: RePEc:inm:oropre:v:49:y:2001:i:1:p:42-51
    DOI: 10.1287/opre.49.1.42.11196
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.49.1.42.11196
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.49.1.42.11196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Williams, H. P., 1995. "Logic applied to integer programming and integer programming applied to logic," European Journal of Operational Research, Elsevier, vol. 81(3), pages 605-616, March.
    2. John N. Hooker, 1989. "Input Proofs and Rank One Cutting Planes," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 137-145, August.
    3. Beaumont, Nicholas, 1990. "An algorithm for disjunctive programs," European Journal of Operational Research, Elsevier, vol. 48(3), pages 362-371, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John N. Hooker, 2002. "Logic, Optimization, and Constraint Programming," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 295-321, November.
    2. Srinivas Bollapragada & Michael R. Bussieck & Suman Mallik, 2004. "Scheduling Commercial Videotapes in Broadcast Television," Operations Research, INFORMS, vol. 52(5), pages 679-689, October.
    3. Yoshihiro Kanno, 2016. "Global optimization of trusses with constraints on number of different cross-sections: a mixed-integer second-order cone programming approach," Computational Optimization and Applications, Springer, vol. 63(1), pages 203-236, January.
    4. Tómasson, Egill & Hesamzadeh, Mohammad Reza & Wolak, Frank A., 2020. "Optimal offer-bid strategy of an energy storage portfolio: A linear quasi-relaxation approach," Applied Energy, Elsevier, vol. 260(C).
    5. Eduardo Muñoz & Mathias Stolpe, 2011. "Generalized Benders’ Decomposition for topology optimization problems," Journal of Global Optimization, Springer, vol. 51(1), pages 149-183, September.
    6. Mathias Stolpe, 2015. "Truss topology optimization with discrete design variables by outer approximation," Journal of Global Optimization, Springer, vol. 61(1), pages 139-163, January.
    7. Adelaide Cerveira & Agostinho Agra & Fernando Bastos & Joaquim Gromicho, 2013. "A new Branch and Bound method for a discrete truss topology design problem," Computational Optimization and Applications, Springer, vol. 54(1), pages 163-187, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John N. Hooker, 2002. "Logic, Optimization, and Constraint Programming," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 295-321, November.
    2. Youssef Hamadi & Saïd Jabbour & Lakhdar Saïs, 2016. "What we can learn from conflicts in propositional satisfiability," Annals of Operations Research, Springer, vol. 240(1), pages 13-37, May.
    3. Yannis Pavlis & Will Recker, 2009. "A Mathematical Logic Approach for the Transformation of the Linear Conditional Piecewise Functions of Dispersion-and-Store and Cell Transmission Traffic Flow Models into Linear Mixed-Integer Form," Transportation Science, INFORMS, vol. 43(1), pages 98-116, February.
    4. Kıbış, Eyyüb Y. & Büyüktahtakın, İ. Esra, 2017. "Optimizing invasive species management: A mixed-integer linear programming approach," European Journal of Operational Research, Elsevier, vol. 259(1), pages 308-321.
    5. Bjarne Grimstad & Brage R. Knudsen, 2020. "Mathematical programming formulations for piecewise polynomial functions," Journal of Global Optimization, Springer, vol. 77(3), pages 455-486, July.
    6. H. Paul Williams & John M. Wilson, 1998. "Connections Between Integer Linear Programming and Constraint Logic Programming—An Overview and Introduction to the Cluster of Articles," INFORMS Journal on Computing, INFORMS, vol. 10(3), pages 261-264, August.
    7. I. R. De Farias & E. L. Johnson & G. L. Nemhauser, 2002. "Facets of the Complementarity Knapsack Polytope," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 210-226, February.
    8. Peter Kirst & Fabian Rigterink & Oliver Stein, 2017. "Global optimization of disjunctive programs," Journal of Global Optimization, Springer, vol. 69(2), pages 283-307, October.
    9. Egon Balas, 2005. "Projection, Lifting and Extended Formulation in Integer and Combinatorial Optimization," Annals of Operations Research, Springer, vol. 140(1), pages 125-161, November.
    10. L. Foulds & B. Toklu & J. Wilson, 2009. "Modelling either-or relations in integer programming," Annals of Operations Research, Springer, vol. 166(1), pages 203-222, February.
    11. Azibi, R. & Vanderpooten, D., 2002. "Construction of rule-based assignment models," European Journal of Operational Research, Elsevier, vol. 138(2), pages 274-293, April.
    12. Wai Kin (Victor) Chan & Lee Schruben, 2008. "Optimization Models of Discrete-Event System Dynamics," Operations Research, INFORMS, vol. 56(5), pages 1218-1237, October.
    13. Peter Kirst & Oliver Stein, 2016. "Solving Disjunctive Optimization Problems by Generalized Semi-infinite Optimization Techniques," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1079-1109, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:49:y:2001:i:1:p:42-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.