IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v69y2017i2d10.1007_s10898-017-0526-9.html
   My bibliography  Save this article

Global optimization of disjunctive programs

Author

Listed:
  • Peter Kirst

    (Karlsruhe Institute of Technology)

  • Fabian Rigterink

    (The University of Newcastle)

  • Oliver Stein

    (Karlsruhe Institute of Technology)

Abstract

We propose a new branch-and-bound framework for global optimization of disjunctive programs with general logical expressions. We do not assume the logical expressions to be in any normal form, and, under slightly stronger assumptions, we allow the use of negations and implications. In contrast to the widely used reformulation as a mixed-integer program, we compute the lower bounds and evaluate the logical expression in one step. Thus, we reduce the size of the problem and work exclusively with continuous variables, which is computationally advantageous. We present preliminary numerical results as proof of concept.

Suggested Citation

  • Peter Kirst & Fabian Rigterink & Oliver Stein, 2017. "Global optimization of disjunctive programs," Journal of Global Optimization, Springer, vol. 69(2), pages 283-307, October.
  • Handle: RePEc:spr:jglopt:v:69:y:2017:i:2:d:10.1007_s10898-017-0526-9
    DOI: 10.1007/s10898-017-0526-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0526-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0526-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruiz, Juan P. & Grossmann, Ignacio E., 2012. "A hierarchy of relaxations for nonlinear convex generalized disjunctive programming," European Journal of Operational Research, Elsevier, vol. 218(1), pages 38-47.
    2. Peter Kirst & Oliver Stein, 2016. "Solving Disjunctive Optimization Problems by Generalized Semi-infinite Optimization Techniques," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1079-1109, June.
    3. Sawaya, Nicolas & Grossmann, Ignacio, 2012. "A hierarchy of relaxations for linear generalized disjunctive programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 70-82.
    4. H. T. Jongen & J. J. Rückmann & O. Stein, 1997. "Disjunctive Optimization: Critical Point Theory," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 321-336, May.
    5. Peter Kirst & Oliver Stein & Paul Steuermann, 2015. "Deterministic upper bounds for spatial branch-and-bound methods in global minimization with nonconvex constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 591-616, July.
    6. Beaumont, Nicholas, 1990. "An algorithm for disjunctive programs," European Journal of Operational Research, Elsevier, vol. 48(3), pages 362-371, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinrun Lyu & Li Chen & Changyou Zhang & Dacheng Qu & Nasro Min-Allah & Yongji Wang, 2018. "An interleaved depth-first search method for the linear optimization problem with disjunctive constraints," Journal of Global Optimization, Springer, vol. 70(4), pages 737-756, April.
    2. Max Bucher & Alexandra Schwartz, 2018. "Second-Order Optimality Conditions and Improved Convergence Results for Regularization Methods for Cardinality-Constrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 383-410, August.
    3. Peter Kirst & Oliver Stein, 2019. "Global optimization of generalized semi-infinite programs using disjunctive programming," Journal of Global Optimization, Springer, vol. 73(1), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Novas, Juan M. & Ramello, Juan Ignacio & Rodríguez, María Analía, 2020. "Generalized disjunctive programming models for the truck loading problem: A case study from the non-alcoholic beverages industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    2. Dimitri J. Papageorgiou & Francisco Trespalacios, 2018. "Pseudo basic steps: bound improvement guarantees from Lagrangian decomposition in convex disjunctive programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 55-83, March.
    3. Francisco Trespalacios & Ignacio E. Grossmann, 2016. "Cutting Plane Algorithm for Convex Generalized Disjunctive Programs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 209-222, May.
    4. Peter Kirst & Oliver Stein, 2016. "Solving Disjunctive Optimization Problems by Generalized Semi-infinite Optimization Techniques," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1079-1109, June.
    5. Francisco Trespalacios & Ignacio E. Grossmann, 2015. "Algorithmic Approach for Improved Mixed-Integer Reformulations of Convex Generalized Disjunctive Programs," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 59-74, February.
    6. Yinrun Lyu & Li Chen & Changyou Zhang & Dacheng Qu & Nasro Min-Allah & Yongji Wang, 2018. "An interleaved depth-first search method for the linear optimization problem with disjunctive constraints," Journal of Global Optimization, Springer, vol. 70(4), pages 737-756, April.
    7. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    8. Fengqiao Luo & Sanjay Mehrotra, 2021. "A geometric branch and bound method for robust maximization of convex functions," Journal of Global Optimization, Springer, vol. 81(4), pages 835-859, December.
    9. J. J. Rückmann & A. Shapiro, 1999. "First-Order Optimality Conditions in Generalized Semi-Infinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 677-691, June.
    10. Can Li & Ignacio E. Grossmann, 2019. "A finite $$\epsilon $$ϵ-convergence algorithm for two-stage stochastic convex nonlinear programs with mixed-binary first and second-stage variables," Journal of Global Optimization, Springer, vol. 75(4), pages 921-947, December.
    11. Juan P. Ruiz & Ignacio E. Grossmann, 2017. "Global optimization of non-convex generalized disjunctive programs: a review on reformulations and relaxation techniques," Journal of Global Optimization, Springer, vol. 67(1), pages 43-58, January.
    12. Kıbış, Eyyüb Y. & Büyüktahtakın, İ. Esra, 2017. "Optimizing invasive species management: A mixed-integer linear programming approach," European Journal of Operational Research, Elsevier, vol. 259(1), pages 308-321.
    13. Gabriele Eichfelder & Kathrin Klamroth & Julia Niebling, 2021. "Nonconvex constrained optimization by a filtering branch and bound," Journal of Global Optimization, Springer, vol. 80(1), pages 31-61, May.
    14. Bjarne Grimstad & Brage R. Knudsen, 2020. "Mathematical programming formulations for piecewise polynomial functions," Journal of Global Optimization, Springer, vol. 77(3), pages 455-486, July.
    15. Li Chen & Yinrun Lyu & Chong Wang & Jingzheng Wu & Changyou Zhang & Nasro Min-Allah & Jamal Alhiyafi & Yongji Wang, 2017. "Solving linear optimization over arithmetic constraint formula," Journal of Global Optimization, Springer, vol. 69(1), pages 69-102, September.
    16. John N. Hooker, 2002. "Logic, Optimization, and Constraint Programming," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 295-321, November.
    17. Yannis Pavlis & Will Recker, 2009. "A Mathematical Logic Approach for the Transformation of the Linear Conditional Piecewise Functions of Dispersion-and-Store and Cell Transmission Traffic Flow Models into Linear Mixed-Integer Form," Transportation Science, INFORMS, vol. 43(1), pages 98-116, February.
    18. I. R. De Farias & E. L. Johnson & G. L. Nemhauser, 2002. "Facets of the Complementarity Knapsack Polytope," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 210-226, February.
    19. Egon Balas, 2005. "Projection, Lifting and Extended Formulation in Integer and Combinatorial Optimization," Annals of Operations Research, Springer, vol. 140(1), pages 125-161, November.
    20. S. Bollapragada & O. Ghattas & J. N. Hooker, 2001. "Optimal Design of Truss Structures by Logic-Based Branch and Cut," Operations Research, INFORMS, vol. 49(1), pages 42-51, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:69:y:2017:i:2:d:10.1007_s10898-017-0526-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.