IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v260y2020ics0306261919319385.html
   My bibliography  Save this article

Optimal offer-bid strategy of an energy storage portfolio: A linear quasi-relaxation approach

Author

Listed:
  • Tómasson, Egill
  • Hesamzadeh, Mohammad Reza
  • Wolak, Frank A.

Abstract

This paper proposes a model of the behavior of an expected profit-maximizing merchant storage owner with the ability to exercise unilateral market power. The resulting non-linear bilevel optimization problem is transformed into a single-level stochastic bilinear program using the Karush-Kuhn-Tucker conditions of the lower-level Independent System Operator dispatch problem. By discretizing the offers and bids of the merchant storage owner, the problem is formulated as a stochastic disjunctive program. Using the disjunctive nature of the derived program, a specialized branch-and-bound algorithm that applies a linear quasi-relaxation of the merchant storage problem is proposed. Our solution algorithm is able to solve the problem in an efficient manner; returning the charge and discharge strategies for the merchant storage owner that yield the highest expected profits. Simulations of test systems reveal the various abilities of the merchant storage owner to exercise unilateral market power. Those include demand withholding, generation withholding and under-use which result in an increased congestion in both space and time when compared to the welfare-maximizing use of storage. Factors such as uncertain bids by other players, final state-of-charge requirements and arbitrage by other storage players are investigated. Moreover, numerical results demonstrate the superior computational performance of the proposed solution algorithm when benchmarked against current practices in the literature.

Suggested Citation

  • Tómasson, Egill & Hesamzadeh, Mohammad Reza & Wolak, Frank A., 2020. "Optimal offer-bid strategy of an energy storage portfolio: A linear quasi-relaxation approach," Applied Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319385
    DOI: 10.1016/j.apenergy.2019.114251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919319385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank A. Wolak, 2007. "Quantifying the supply-side benefits from forward contracting in wholesale electricity markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(7), pages 1179-1209.
    2. Zhong, Jin & He, Lina & Li, Canbing & Cao, Yijia & Wang, Jianhui & Fang, Baling & Zeng, Long & Xiao, Guoxuan, 2014. "Coordinated control for large-scale EV charging facilities and energy storage devices participating in frequency regulation," Applied Energy, Elsevier, vol. 123(C), pages 253-262.
    3. Frank Wolak, 2000. "An Empirical Analysis of the Impact of Hedge Contracts on Bidding Behavior in a Competitive Electricity Market," International Economic Journal, Taylor & Francis Journals, vol. 14(2), pages 1-39.
    4. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    5. Mulder, Grietus & Six, Daan & Claessens, Bert & Broes, Thijs & Omar, Noshin & Mierlo, Joeri Van, 2013. "The dimensioning of PV-battery systems depending on the incentive and selling price conditions," Applied Energy, Elsevier, vol. 111(C), pages 1126-1135.
    6. S. Bollapragada & O. Ghattas & J. N. Hooker, 2001. "Optimal Design of Truss Structures by Logic-Based Branch and Cut," Operations Research, INFORMS, vol. 49(1), pages 42-51, February.
    7. Erdinc, Ozan & Paterakis, Nikolaos G. & Pappi, Iliana N. & Bakirtzis, Anastasios G. & Catalão, João P.S., 2015. "A new perspective for sizing of distributed generation and energy storage for smart households under demand response," Applied Energy, Elsevier, vol. 143(C), pages 26-37.
    8. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
    9. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    10. Cruise, James R. & Flatley, Lisa & Zachary, Stan, 2018. "Impact of storage competition on energy markets," European Journal of Operational Research, Elsevier, vol. 269(3), pages 998-1012.
    11. Bautista, Guillermo & Anjos, Miguel F. & Vannelli, Anthony, 2007. "Modeling Market Power in Electricity Markets: Is the Devil Only in the Details?," The Electricity Journal, Elsevier, vol. 20(1), pages 82-92.
    12. Castagneto Gissey, Giorgio & Subkhankulova, Dina & Dodds, Paul E. & Barrett, Mark, 2019. "Value of energy storage aggregation to the electricity system," Energy Policy, Elsevier, vol. 128(C), pages 685-696.
    13. James Bushnell, 2003. "A Mixed Complementarity Model of Hydrothermal Electricity Competition in the Western United States," Operations Research, INFORMS, vol. 51(1), pages 80-93, February.
    14. Bushnell, James, 2003. "A Mixed Complementarity Model of Hydro-Thermal Competition in the Western U.S," Staff General Research Papers Archive 13144, Iowa State University, Department of Economics.
    15. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2016. "Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage," Applied Energy, Elsevier, vol. 163(C), pages 93-104.
    16. Liu, Zifa & Chen, Yixiao & Zhuo, Ranqun & Jia, Hongjie, 2018. "Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling," Applied Energy, Elsevier, vol. 210(C), pages 1113-1125.
    17. De Vivero-Serrano, Gustavo & Bruninx, Kenneth & Delarue, Erik, 2019. "Implications of bid structures on the offering strategies of merchant energy storage systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Bradbury, Kyle & Pratson, Lincoln & Patiño-Echeverri, Dalia, 2014. "Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets," Applied Energy, Elsevier, vol. 114(C), pages 512-519.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shiyu & Ren, Yanzhe & Zhang, Zhenyu & Xiao, Yao & Bie, Zhaohong & Wang, Xifan, 2021. "Optimal bid-offer strategy for a virtual energy storage merchant: A stochastic bi-level model with all-scenario feasibility," Applied Energy, Elsevier, vol. 299(C).
    2. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    3. Thakur, Jagruti & Hesamzadeh, Mohammad Reza & Date, Paresh & Bunn, Derek, 2023. "Pricing and hedging wind power prediction risk with binary option contracts," Energy Economics, Elsevier, vol. 126(C).
    4. Jerry Anunrojwong & Santiago R. Balseiro & Omar Besbes & Bolun Xu, 2024. "Battery Operations in Electricity Markets: Strategic Behavior and Distortions," Papers 2406.18685, arXiv.org.
    5. Fang, Xichen & Guo, Hongye & Zhang, Xian & Wang, Xuanyuan & Chen, Qixin, 2022. "An efficient and incentive-compatible market design for energy storage participation," Applied Energy, Elsevier, vol. 311(C).
    6. Xia, Yuanxing & Xu, Qingshan & Chen, Lu & Du, Pengwei, 2022. "The flexible roles of distributed energy storages in peer-to-peer transactive energy market: A state-of-the-art review," Applied Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan, Rui & Abdulla, Ahmed & Li, Mingquan, 2021. "Deleterious effects of strategic, profit-seeking energy storage operation on electric power system costs," Applied Energy, Elsevier, vol. 292(C).
    2. Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
    3. Shantanu Chakraborty & Remco Verzijlbergh & Kyri Baker & Milos Cvetkovic & Laurens De Vries & Zofia Lukszo, 2020. "A Coordination Mechanism For Reducing Price Spikes in Distribution Grids," Energies, MDPI, vol. 13(10), pages 1-24, May.
    4. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
    5. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    6. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    7. Holmberg, Pär & Newbery, David & Ralph, Daniel, 2013. "Supply function equilibria: Step functions and continuous representations," Journal of Economic Theory, Elsevier, vol. 148(4), pages 1509-1551.
    8. David P. Brown & Andrew Eckert, 2018. "Analyzing the Impact of Electricity Market Structure Changes and Mergers: The Importance of Forward Commitments," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 52(1), pages 101-137, February.
    9. Pejman Bahramian, 2021. "Integration of wind power into an electricity system using pumped-storage: Economic challenges and stakeholder impacts," Working Paper 1480, Economics Department, Queen's University.
    10. Massol, Olivier & Rifaat, Omer, 2018. "Phasing out the U.S. Federal Helium Reserve: Policy insights from a world helium model," Resource and Energy Economics, Elsevier, vol. 54(C), pages 186-211.
    11. David P. Brown & Andrew Eckert, 2022. "Pricing Patterns in Wholesale Electricity Markets: Unilateral Market Power or Coordinated Behavior?," Journal of Industrial Economics, Wiley Blackwell, vol. 70(1), pages 168-216, March.
    12. Wu, Wei & Lin, Boqiang, 2018. "Application value of energy storage in power grid: A special case of China electricity market," Energy, Elsevier, vol. 165(PB), pages 1191-1199.
    13. Michele Fioretti & Jorge Tamayo, 2021. "Saving for a Dry Day: Coal, Dams, and the Energy Transition," SciencePo Working papers Main hal-03389152, HAL.
    14. Jorge Balat & Juan Esteban Carranza & Juan David Martin & Alvaro Riascos, 2022. "The effects of changes in the regulation of the Colombian wholesale electricity market in a structural model of complex auctions," Borradores de Economia 1211, Banco de la Republica de Colombia.
    15. Löschenbrand, Markus, 2020. "Finding multiple Nash equilibria via machine learning-supported Gröbner bases," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1178-1189.
    16. Ding, Jie & Xu, Yujie & Chen, Haisheng & Sun, Wenwen & Hu, Shan & Sun, Shuang, 2019. "Value and economic estimation model for grid-scale energy storage in monopoly power markets," Applied Energy, Elsevier, vol. 240(C), pages 986-1002.
    17. Olave-Rojas, David & Álvarez-Miranda, Eduardo, 2021. "Towards a complex investment evaluation framework for renewable energy systems: A 2-level heuristic approach," Energy, Elsevier, vol. 228(C).
    18. Zhang, Xinjing & Chen, Haisheng & Xu, Yujie & Li, Wen & He, Fengjuan & Guo, Huan & Huang, Ye, 2017. "Distributed generation with energy storage systems: A case study," Applied Energy, Elsevier, vol. 204(C), pages 1251-1263.
    19. David P. Brown & Andrew Eckert, 2020. "Imperfect Competition in Electricity Markets with Renewable Generation: The Role of Renewable Compensation Policies," The Energy Journal, , vol. 41(4), pages 61-88, July.
    20. Jorge Balat & Juan E. Carranza & Juan D. Martin, 2015. "Dynamic and Strategic Behavior in Hydropower-Dominated Electricity Markets: Empirical Evidence for Colombia," Borradores de Economia 12906, Banco de la Republica.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.