IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v77y2020i3d10.1007_s10898-020-00881-4.html
   My bibliography  Save this article

Mathematical programming formulations for piecewise polynomial functions

Author

Listed:
  • Bjarne Grimstad

    (NTNU
    Solution Seeker)

  • Brage R. Knudsen

    (NTNU
    SINTEF Energy Research)

Abstract

This paper studies mathematical programming formulations for solving optimization problems with piecewise polynomial (PWP) constraints. We elaborate on suitable polynomial bases as a means of efficiently representing PWPs in mathematical programs, comparing and drawing connections between the monomial basis, the Bernstein basis, and B-splines. The theory is presented for both continuous and semi-continuous PWPs. Using a disjunctive formulation, we then exploit the characteristic of common polynomial basis functions to significantly reduce the number of nonlinearities, and to suggest a bound-tightening technique for PWP constraints. We derive several extensions using Bernstein cuts, an expanded Bernstein basis, and an expanded monomial basis, which upon a standard big-M reformulation yield a set of new MINLP models. The formulations are compared by globally solving six test sets of MINLPs and a realistic petroleum production optimization problem. The proposed framework shows promising numerical performance and facilitates the solution of PWP-constrained optimization problems using standard MINLP software.

Suggested Citation

  • Bjarne Grimstad & Brage R. Knudsen, 2020. "Mathematical programming formulations for piecewise polynomial functions," Journal of Global Optimization, Springer, vol. 77(3), pages 455-486, July.
  • Handle: RePEc:spr:jglopt:v:77:y:2020:i:3:d:10.1007_s10898-020-00881-4
    DOI: 10.1007/s10898-020-00881-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00881-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00881-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Israel Zang, 1981. "Discontinuous Optimization by Smoothing," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 140-152, February.
    2. Stefan Scholtes, 2004. "Nonconvex Structures in Nonlinear Programming," Operations Research, INFORMS, vol. 52(3), pages 368-383, June.
    3. Nadia Martinez & Hadis Anahideh & Jay M. Rosenberger & Diana Martinez & Victoria C. P. Chen & Bo Ping Wang, 2017. "Global optimization of non-convex piecewise linear regression splines," Journal of Global Optimization, Springer, vol. 68(3), pages 563-586, July.
    4. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    5. Achim Wechsung & Paul Barton, 2014. "Global optimization of bounded factorable functions with discontinuities," Journal of Global Optimization, Springer, vol. 58(1), pages 1-30, January.
    6. Beaumont, Nicholas, 1990. "An algorithm for disjunctive programs," European Journal of Operational Research, Elsevier, vol. 48(3), pages 362-371, October.
    7. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Holmberg, Kaj, 1994. "Solving the staircase cost facility location problem with decomposition and piecewise linearization," European Journal of Operational Research, Elsevier, vol. 75(1), pages 41-61, May.
    9. Ahmet B. Keha & Ismael R. de Farias & George L. Nemhauser, 2006. "A Branch-and-Cut Algorithm Without Binary Variables for Nonconvex Piecewise Linear Optimization," Operations Research, INFORMS, vol. 54(5), pages 847-858, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aalami, Soheila & Kattan, Lina, 2022. "Proportionally fair flow markets for transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 24-41.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    2. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R, 2017. "On modelling non-linear quantity discounts in a supplier selection problem by mixed linear integer optimization," Annals of Operations Research, Springer, vol. 258(2), pages 301-346, November.
    3. Joey Huchette & Joey Huchette, 2019. "A Combinatorial Approach for Small and Strong Formulations of Disjunctive Constraints," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 793-820, August.
    4. Xiaolin Huang & Jun Xu & Shuning Wang, 2012. "Exact Penalty and Optimality Condition for Nonseparable Continuous Piecewise Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 145-164, October.
    5. Steffen Rebennack, 2016. "Computing tight bounds via piecewise linear functions through the example of circle cutting problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 3-57, August.
    6. Liron Ravner & Yoni Nazarathy, 2017. "Scheduling for a processor sharing system with linear slowdown," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 71-102, August.
    7. Codas, Andrés & Camponogara, Eduardo, 2012. "Mixed-integer linear optimization for optimal lift-gas allocation with well-separator routing," European Journal of Operational Research, Elsevier, vol. 217(1), pages 222-231.
    8. Jon Lee & Daphne Skipper & Emily Speakman & Luze Xu, 2023. "Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 1-35, January.
    9. John N. Hooker, 2002. "Logic, Optimization, and Constraint Programming," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 295-321, November.
    10. Dirk Lorenz & Marc Pfetsch & Andreas Tillmann, 2014. "An infeasible-point subgradient method using adaptive approximate projections," Computational Optimization and Applications, Springer, vol. 57(2), pages 271-306, March.
    11. Dan Trietsch, 1985. "Optimal Motion Towards a Stochastic Destination," Discussion Papers 654, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    12. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).
    13. Pedro Castro & Ignacio Grossmann, 2014. "Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems," Journal of Global Optimization, Springer, vol. 59(2), pages 277-306, July.
    14. Jueyou Li & Zhiyou Wu & Changzhi Wu & Qiang Long & Xiangyu Wang, 2016. "An Inexact Dual Fast Gradient-Projection Method for Separable Convex Optimization with Linear Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 153-171, January.
    15. Guoyin Li & Alfred Ma & Ting Pong, 2014. "Robust least square semidefinite programming with applications," Computational Optimization and Applications, Springer, vol. 58(2), pages 347-379, June.
    16. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    17. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. S. Göttlich & A. Potschka & C. Teuber, 2019. "A partial outer convexification approach to control transmission lines," Computational Optimization and Applications, Springer, vol. 72(2), pages 431-456, March.
    19. Dimitris Bertsimas & Nishanth Mundru, 2021. "Sparse Convex Regression," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 262-279, January.
    20. Holmberg, Kaj & Ling, Jonas, 1997. "A Lagrangean heuristic for the facility location problem with staircase costs," European Journal of Operational Research, Elsevier, vol. 97(1), pages 63-74, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:77:y:2020:i:3:d:10.1007_s10898-020-00881-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.