IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v15y2013i3p387-404.html
   My bibliography  Save this article

Optimal Dynamic Assortment Planning with Demand Learning

Author

Listed:
  • Denis Sauré

    (Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260)

  • Assaf Zeevi

    (Graduate School of Business, Columbia University, New York, New York 10027)

Abstract

We study a family of stylized assortment planning problems, where arriving customers make purchase decisions among offered products based on maximizing their utility. Given limited display capacity and no a priori information on consumers' utility, the retailer must select which subset of products to offer. By offering different assortments and observing the resulting purchase behavior, the retailer learns about consumer preferences, but this experimentation should be balanced with the goal of maximizing revenues. We develop a family of dynamic policies that judiciously balance the aforementioned trade-off between exploration and exploitation, and prove that their performance cannot be improved upon in a precise mathematical sense. One salient feature of these policies is that they “quickly” recognize, and hence limit experimentation on, strictly suboptimal products.

Suggested Citation

  • Denis Sauré & Assaf Zeevi, 2013. "Optimal Dynamic Assortment Planning with Demand Learning," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 387-404, July.
  • Handle: RePEc:inm:ormsom:v:15:y:2013:i:3:p:387-404
    DOI: 10.1287/msom.2013.0429
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.2013.0429
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.2013.0429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wallace J. Hopp & Xiaowei Xu, 2008. "A Static Approximation for Dynamic Demand Substitution with Applications in a Competitive Market," Operations Research, INFORMS, vol. 56(3), pages 630-645, June.
    2. Vivek F. Farias & Benjamin Van Roy, 2010. "Dynamic Pricing with a Prior on Market Response," Operations Research, INFORMS, vol. 58(1), pages 16-29, February.
    3. Andrew E. B. Lim & J. George Shanthikumar, 2007. "Relative Entropy, Exponential Utility, and Robust Dynamic Pricing," Operations Research, INFORMS, vol. 55(2), pages 198-214, April.
    4. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    5. A. Gürhan Kök & Marshall L. Fisher & Ramnath Vaidyanathan, 2008. "Assortment Planning: Review of Literature and Industry Practice," International Series in Operations Research & Management Science, in: Narendra Agrawal & Stephen A. Smith (ed.), Retail Supply Chain Management, chapter 0, pages 99-153, Springer.
    6. Vishal Gaur & Dorothée Honhon, 2006. "Assortment Planning and Inventory Decisions Under a Locational Choice Model," Management Science, INFORMS, vol. 52(10), pages 1528-1543, October.
    7. Siddharth Mahajan & Garrett van Ryzin, 2001. "Stocking Retail Assortments Under Dynamic Consumer Substitution," Operations Research, INFORMS, vol. 49(3), pages 334-351, June.
    8. Nimrod Megiddo, 1979. "Combinatorial Optimization with Rational Objective Functions," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 414-424, November.
    9. Canan Ulu & Dorothée Honhon & Aydın Alptekinoğlu, 2012. "Learning Consumer Tastes Through Dynamic Assortments," Operations Research, INFORMS, vol. 60(4), pages 833-849, August.
    10. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
    11. Felipe Caro & Jérémie Gallien, 2007. "Dynamic Assortment with Demand Learning for Seasonal Consumer Goods," Management Science, INFORMS, vol. 53(2), pages 276-292, February.
    12. Garrett van Ryzin & Siddharth Mahajan, 1999. "On the Relationship Between Inventory Costs and Variety Benefits in Retail Assortments," Management Science, INFORMS, vol. 45(11), pages 1496-1509, November.
    13. Victor F. Araman & René Caldentey, 2009. "Dynamic Pricing for Nonperishable Products with Demand Learning," Operations Research, INFORMS, vol. 57(5), pages 1169-1188, October.
    14. Josef Broder & Paat Rusmevichientong, 2012. "Dynamic Pricing Under a General Parametric Choice Model," Operations Research, INFORMS, vol. 60(4), pages 965-980, August.
    15. Paat Rusmevichientong & Zuo-Jun Max Shen & David B. Shmoys, 2010. "Dynamic Assortment Optimization with a Multinomial Logit Choice Model and Capacity Constraint," Operations Research, INFORMS, vol. 58(6), pages 1666-1680, December.
    16. Omar Besbes & Assaf Zeevi, 2009. "Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms," Operations Research, INFORMS, vol. 57(6), pages 1407-1420, December.
    17. Vivek F. Farias & Ritesh Madan, 2011. "The Irrevocable Multiarmed Bandit Problem," Operations Research, INFORMS, vol. 59(2), pages 383-399, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xi Chen & Chao Shi & Yining Wang & Yuan Zhou, 2021. "Dynamic Assortment Planning Under Nested Logit Models," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 85-102, January.
    2. Qiu, Jiaqing & Li, Xiangyong & Duan, Yongrui & Chen, Mengxi & Tian, Peng, 2020. "Dynamic assortment in the presence of brand heterogeneity," Journal of Retailing and Consumer Services, Elsevier, vol. 56(C).
    3. Gur, Yonatan & Macnamara, Gregory & Saban, Daniela, 2020. "On the Disclosure of Promotion Value in Platforms with Learning Sellers," Research Papers 3865, Stanford University, Graduate School of Business.
    4. Arhami, Omid & Aslani, Shirin & Talebian, Masoud, 2024. "Dynamic assortment planning and capacity allocation with logit substitution," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
    5. Agrawal, Priyank & Tulabandhula, Theja & Avadhanula, Vashist, 2023. "A tractable online learning algorithm for the multinomial logit contextual bandit," European Journal of Operational Research, Elsevier, vol. 310(2), pages 737-750.
    6. Elçin Ergin & Mehmet Gümüş & Nathan Yang, 2022. "An Empirical Analysis of Intra‐Firm Product Substitutability in Fashion Retailing," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 607-621, February.
    7. Shaojie Tang & Jing Yuan, 2021. "Cascade Submodular Maximization: Question Selection and Sequencing in Online Personality Quiz," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2143-2161, July.
    8. Yonatan Gur & Gregory Macnamara & Ilan Morgenstern & Daniela Saban, 2019. "Information Disclosure and Promotion Policy Design for Platforms," Papers 1911.09256, arXiv.org, revised Dec 2022.
    9. Fernando Bernstein & A. Gürhan Kök & Lei Xie, 2015. "Dynamic Assortment Customization with Limited Inventories," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 538-553, October.
    10. Boxiao Chen & Xiuli Chao, 2020. "Dynamic Inventory Control with Stockout Substitution and Demand Learning," Management Science, INFORMS, vol. 66(11), pages 5108-5127, November.
    11. Hense, Jonas & Hübner, Alexander, 2022. "Assortment optimization in omni-channel retailing," European Journal of Operational Research, Elsevier, vol. 301(1), pages 124-140.
    12. Yining Wang & Xi Chen & Xiangyu Chang & Dongdong Ge, 2021. "Uncertainty Quantification for Demand Prediction in Contextual Dynamic Pricing," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1703-1717, June.
    13. Xi Chen & Yining Wang & Yuan Zhou, 2018. "Dynamic Assortment Optimization with Changing Contextual Information," Papers 1810.13069, arXiv.org, revised Jan 2019.
    14. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    15. Gel, Esma S. & Salman, F. Sibel, 2022. "Dynamic ordering decisions with approximate learning of supply yield uncertainty," International Journal of Production Economics, Elsevier, vol. 243(C).
    16. Francetich, Alejandro & Kreps, David, 2020. "Choosing a good toolkit, II: Bayes-rule based heuristics," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    17. Dipankar Das, 2023. "A Model of Competitive Assortment Planning Algorithm," Papers 2307.09479, arXiv.org.
    18. Tai-Yu Ma & Sylvain Klein, 2020. "Integrated ridesharing services with chance-constrained dynamic pricing and demand learning," Papers 2001.09151, arXiv.org, revised Jun 2020.
    19. Omar Besbes & Yonatan Gur & Assaf Zeevi, 2016. "Optimization in Online Content Recommendation Services: Beyond Click-Through Rates," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 15-33, February.
    20. Claudio Cardoso Flores & Marcelo Cunha Medeiros, 2020. "Online Action Learning in High Dimensions: A Conservative Perspective," Papers 2009.13961, arXiv.org, revised Mar 2024.
    21. Muzaffer Buyruk & Ertan Güner, 2022. "Personalization in airline revenue management: an overview and future outlook," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(2), pages 129-139, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Jiaqing & Li, Xiangyong & Duan, Yongrui & Chen, Mengxi & Tian, Peng, 2020. "Dynamic assortment in the presence of brand heterogeneity," Journal of Retailing and Consumer Services, Elsevier, vol. 56(C).
    2. Talebian, Masoud & Boland, Natashia & Savelsbergh, Martin, 2014. "Pricing to accelerate demand learning in dynamic assortment planning for perishable products," European Journal of Operational Research, Elsevier, vol. 237(2), pages 555-565.
    3. Pol Boada-Collado & Victor Martínez-de-Albéniz, 2020. "Estimating and Optimizing the Impact of Inventory on Consumer Choices in a Fashion Retail Setting," Manufacturing & Service Operations Management, INFORMS, vol. 22(3), pages 582-597, May.
    4. Arhami, Omid & Aslani, Shirin & Talebian, Masoud, 2024. "Dynamic assortment planning and capacity allocation with logit substitution," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
    5. Ilan Lobel, 2021. "Revenue Management and the Rise of the Algorithmic Economy," Management Science, INFORMS, vol. 67(9), pages 5389-5398, September.
    6. Victor Martínez-de-Albéniz & Sumit Kunnumkal, 2022. "A Model for Integrated Inventory and Assortment Planning," Management Science, INFORMS, vol. 68(7), pages 5049-5067, July.
    7. Zizhuo Wang & Shiming Deng & Yinyu Ye, 2014. "Close the Gaps: A Learning-While-Doing Algorithm for Single-Product Revenue Management Problems," Operations Research, INFORMS, vol. 62(2), pages 318-331, April.
    8. Athanassios N. Avramidis & Arnoud V. Boer, 2021. "Dynamic pricing with finite price sets: a non-parametric approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 1-34, August.
    9. Felipe Caro & Victor Martínez-de-Albéniz & Paat Rusmevichientong, 2014. "The Assortment Packing Problem: Multiperiod Assortment Planning for Short-Lived Products," Management Science, INFORMS, vol. 60(11), pages 2701-2721, November.
    10. Athanassios N. Avramidis, 2020. "A pricing problem with unknown arrival rate and price sensitivity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 77-106, August.
    11. den Boer, Arnoud V., 2015. "Tracking the market: Dynamic pricing and learning in a changing environment," European Journal of Operational Research, Elsevier, vol. 247(3), pages 914-927.
    12. Arnoud V. den Boer & Bert Zwart, 2014. "Simultaneously Learning and Optimizing Using Controlled Variance Pricing," Management Science, INFORMS, vol. 60(3), pages 770-783, March.
    13. Menezes, Mozart B.C. & Pinto, Roberto, 2022. "Product proliferation, cannibalisation, and substitution: A first look into entailed risk and complexity," International Journal of Production Economics, Elsevier, vol. 243(C).
    14. Dorothée Honhon & Vishal Gaur & Sridhar Seshadri, 2010. "Assortment Planning and Inventory Decisions Under Stockout-Based Substitution," Operations Research, INFORMS, vol. 58(5), pages 1364-1379, October.
    15. James M. Davis & Guillermo Gallego & Huseyin Topaloglu, 2014. "Assortment Optimization Under Variants of the Nested Logit Model," Operations Research, INFORMS, vol. 62(2), pages 250-273, April.
    16. Omar Besbes & Assaf Zeevi, 2012. "Blind Network Revenue Management," Operations Research, INFORMS, vol. 60(6), pages 1537-1550, December.
    17. Arnoud V. den Boer & N. Bora Keskin, 2020. "Discontinuous Demand Functions: Estimation and Pricing," Management Science, INFORMS, vol. 66(10), pages 4516-4534, October.
    18. Michael N. Katehakis & Yifeng Liu & Jian Yang, 2022. "A revisit to the markup practice of irreversible dynamic pricing," Annals of Operations Research, Springer, vol. 317(1), pages 77-105, October.
    19. Arnoud V. den Boer, 2014. "Dynamic Pricing with Multiple Products and Partially Specified Demand Distribution," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 863-888, August.
    20. Sentao Miao & Xiuli Chao, 2021. "Dynamic Joint Assortment and Pricing Optimization with Demand Learning," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 525-545, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:15:y:2013:i:3:p:387-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.