IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v55y2007i2p198-214.html
   My bibliography  Save this article

Relative Entropy, Exponential Utility, and Robust Dynamic Pricing

Author

Listed:
  • Andrew E. B. Lim

    (Department of Industrial Engineering and Operations Research, University of California, Berkeley, California 94720)

  • J. George Shanthikumar

    (Department of Industrial Engineering and Operations Research, University of California, Berkeley, California 94720)

Abstract

In the area of dynamic revenue management, optimal pricing policies are typically computed on the basis of an underlying demand rate model. From the perspective of applications, this approach implicitly assumes that the model is an accurate representation of the real-world demand process and that the parameters characterizing this model can be accurately calibrated using data. In many situations, neither of these conditions are satisfied. Indeed, models are usually simplified for the purpose of tractability and may be difficult to calibrate because of a lack of data. Moreover, pricing policies that are computed under the assumption that the model is correct may perform badly when this is not the case. This paper presents an approach to single-product dynamic revenue management that accounts for errors in the underlying model at the optimization stage. Uncertainty in the demand rate model is represented using the notion of relative entropy, and a tractable reformulation of the “robust pricing problem” is obtained using results concerning the change of probability measure for point processes. The optimal pricing policy is obtained through a version of the so-called Isaacs’ equation for stochastic differential games, and the structural properties of the optimal solution are obtained through an analysis of this equation. In particular, (i) closed-form solutions for the special case of an exponential nominal demand rate model, (ii) general conditions for the exchange of the “max” and the “min” in the differential game, and (iii) the equivalence between the robust pricing problem and that of single-product revenue management with an exponential utility function without model uncertainty, are established through the analysis of this equation.

Suggested Citation

  • Andrew E. B. Lim & J. George Shanthikumar, 2007. "Relative Entropy, Exponential Utility, and Robust Dynamic Pricing," Operations Research, INFORMS, vol. 55(2), pages 198-214, April.
  • Handle: RePEc:inm:oropre:v:55:y:2007:i:2:p:198-214
    DOI: 10.1287/opre.1070.0385
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1070.0385
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1070.0385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Yossi Aviv & Amit Pazgal, 2005. "A Partially Observed Markov Decision Process for Dynamic Pricing," Management Science, INFORMS, vol. 51(9), pages 1400-1416, September.
    3. Guillermo Gallego & Garrett van Ryzin, 1997. "A Multiproduct Dynamic Pricing Problem and Its Applications to Network Yield Management," Operations Research, INFORMS, vol. 45(1), pages 24-41, February.
    4. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    5. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    6. Epstein, Larry G & Wang, Tan, 1994. "Intertemporal Asset Pricing Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 62(2), pages 283-322, March.
    7. Lin, Kyle Y., 2006. "Dynamic pricing with real-time demand learning," European Journal of Operational Research, Elsevier, vol. 174(1), pages 522-538, October.
    8. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, April.
    9. Youyi Feng & Guillermo Gallego, 2000. "Perishable Asset Revenue Management with Markovian Time Dependent Demand Intensities," Management Science, INFORMS, vol. 46(7), pages 941-956, July.
    10. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    11. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    12. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    13. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    14. Arnab Nilim & Laurent El Ghaoui, 2005. "Robust Control of Markov Decision Processes with Uncertain Transition Matrices," Operations Research, INFORMS, vol. 53(5), pages 780-798, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    2. Gianfranco Guastaroba & Gautam Mitra & M Grazia Speranza, 2011. "Investigating the effectiveness of robust portfolio optimization techniques," Journal of Asset Management, Palgrave Macmillan, vol. 12(4), pages 260-280, September.
    3. Soleimanian, Azam & Salmani Jajaei, Ghasemali, 2013. "Robust nonlinear optimization with conic representable uncertainty set," European Journal of Operational Research, Elsevier, vol. 228(2), pages 337-344.
    4. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    5. Somayeh Moazeni & Thomas Coleman & Yuying Li, 2013. "Regularized robust optimization: the optimal portfolio execution case," Computational Optimization and Applications, Springer, vol. 55(2), pages 341-377, June.
    6. Gülpınar, Nalan & Pachamanova, Dessislava & Çanakoğlu, Ethem, 2013. "Robust strategies for facility location under uncertainty," European Journal of Operational Research, Elsevier, vol. 225(1), pages 21-35.
    7. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    8. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    9. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    10. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    11. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    12. Zhang, Bo & Yao, Tao & Friesz, Terry L. & Sun, Yuqi, 2015. "A tractable two-stage robust winner determination model for truckload service procurement via combinatorial auctions," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 16-31.
    13. Tao Yao & Supreet Mandala & Byung Chung, 2009. "Evacuation Transportation Planning Under Uncertainty: A Robust Optimization Approach," Networks and Spatial Economics, Springer, vol. 9(2), pages 171-189, June.
    14. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    15. Jonathan Li & Roy Kwon, 2013. "Portfolio selection under model uncertainty: a penalized moment-based optimization approach," Journal of Global Optimization, Springer, vol. 56(1), pages 131-164, May.
    16. Ming Chen & Zhi-Long Chen, 2018. "Robust Dynamic Pricing with Two Substitutable Products," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 249-268, May.
    17. Raphael Hauser & Vijay Krishnamurthy & Reha Tutuncu, 2013. "Relative Robust Portfolio Optimization," Papers 1305.0144, arXiv.org, revised May 2013.
    18. Jun-Ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2017. "Calibration of Distributionally Robust Empirical Optimization Models," Papers 1711.06565, arXiv.org, revised May 2020.
    19. Michael N. Katehakis & Yifeng Liu & Jian Yang, 2022. "A revisit to the markup practice of irreversible dynamic pricing," Annals of Operations Research, Springer, vol. 317(1), pages 77-105, October.
    20. Somayyeh Lotfi & Stavros A. Zenios, 2024. "Robust mean-to-CVaR optimization under ambiguity in distributions means and covariance," Review of Managerial Science, Springer, vol. 18(7), pages 2115-2140, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:55:y:2007:i:2:p:198-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.