IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v60y2012i4p833-849.html
   My bibliography  Save this article

Learning Consumer Tastes Through Dynamic Assortments

Author

Listed:
  • Canan Ulu

    (McCombs School of Business, The University of Texas at Austin, Austin, Texas 78712)

  • Dorothée Honhon

    (School of Industrial Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands)

  • Aydın Alptekinoğlu

    (Cox School of Business, Southern Methodist University, Dallas, Texas 75275)

Abstract

How should a firm modify its product assortment over time when learning about consumer tastes? In this paper, we study dynamic assortment decisions in a horizontally differentiated product category for which consumers' diverse tastes can be represented as locations on a Hotelling line. We presume that the firm knows all possible consumer locations, comprising a finite set, but does not know their probability distribution. We model this problem as a discrete-time dynamic program; each period, the firm chooses an assortment and sets prices to maximize the total expected profit over a finite horizon, given its subjective beliefs over consumer tastes. The consumers then choose a product from the assortment that maximizes their own utility. The firm observes sales, which provide censored information on consumer tastes, and it updates beliefs in a Bayesian fashion. There is a recurring trade-off between the immediate profits from sales in the current period (exploitation) and the informational gains to be exploited in all future periods (exploration). We show that one can (partially) order assortments based on their information content and that in any given period the optimal assortment cannot be less informative than the myopically optimal assortment. This result is akin to the well-known “stock more” result in censored newsvendor problems with the newsvendor learning about demand through sales when lost sales are not observable. We demonstrate that it can be optimal for the firm to alternate between exploration and exploitation, and even offer assortments that lead to losses in the current period in order to gain information on consumer tastes. We also develop a Bayesian conjugate model that reduces the state space of the dynamic program and study value of learning using this conjugate model.

Suggested Citation

  • Canan Ulu & Dorothée Honhon & Aydın Alptekinoğlu, 2012. "Learning Consumer Tastes Through Dynamic Assortments," Operations Research, INFORMS, vol. 60(4), pages 833-849, August.
  • Handle: RePEc:inm:oropre:v:60:y:2012:i:4:p:833-849
    DOI: 10.1287/opre.1120.1067
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1120.1067
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1120.1067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li Chen & Erica L. Plambeck, 2008. "Dynamic Inventory Management with Learning About the Demand Distribution and Substitution Probability," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 236-256, May.
    2. Ayd{i}n Alptekinou{g}lu & Charles J. Corbett, 2008. "Mass Customization vs. Mass Production: Variety and Price Competition," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 204-217, August.
    3. Xiaomei Ding & Martin L. Puterman & Arnab Bisi, 2002. "The Censored Newsvendor and the Optimal Acquisition of Information," Operations Research, INFORMS, vol. 50(3), pages 517-527, June.
    4. Felipe Caro & Jérémie Gallien, 2007. "Dynamic Assortment with Demand Learning for Seasonal Consumer Goods," Management Science, INFORMS, vol. 53(2), pages 276-292, February.
    5. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74(2), pages 132-132.
    6. Ayd{i}n Alptekinou{g}lu & Charles J. Corbett, 2010. "Leadtime-Variety Tradeoff in Product Differentiation," Manufacturing & Service Operations Management, INFORMS, vol. 12(4), pages 569-582, January.
    7. Paat Rusmevichientong & Zuo-Jun Max Shen & David B. Shmoys, 2010. "Dynamic Assortment Optimization with a Multinomial Logit Choice Model and Capacity Constraint," Operations Research, INFORMS, vol. 58(6), pages 1666-1680, December.
    8. Felipe Caro & Victor Martínez-de-Albéniz, 2012. "Product and Price Competition with Satiation Effects," Management Science, INFORMS, vol. 58(7), pages 1357-1373, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lacroix, Rachel & Seifert, Ralf W. & Timonina-Farkas, Anna, 2021. "Benefiting from additive manufacturing for mass customization across the product life cycle," Operations Research Perspectives, Elsevier, vol. 8(C).
    2. Denis Sauré & Assaf Zeevi, 2013. "Optimal Dynamic Assortment Planning with Demand Learning," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 387-404, July.
    3. Ying Ding & Yanping Tu & Jingchuan Pu & Liangfei Qiu, 2021. "Environmental Factors in Operations Management: The Impact of Air Quality on Product Demand," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 2910-2924, September.
    4. Omar Besbes & Yonatan Gur & Assaf Zeevi, 2016. "Optimization in Online Content Recommendation Services: Beyond Click-Through Rates," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 15-33, February.
    5. Qiu, Jiaqing & Li, Xiangyong & Duan, Yongrui & Chen, Mengxi & Tian, Peng, 2020. "Dynamic assortment in the presence of brand heterogeneity," Journal of Retailing and Consumer Services, Elsevier, vol. 56(C).
    6. Hekimoğlu, Mustafa & Sevim, Ismail & Aksezer, Çağlar & Durmuş, İpek, 2019. "Assortment optimization with log-linear demand: Application at a Turkish grocery store," Journal of Retailing and Consumer Services, Elsevier, vol. 50(C), pages 199-214.
    7. Chang Hwan Lee & Tsan‐Ming Choi & T. C. Edwin Cheng, 2021. "Operations strategies with snobbish and strategic consumers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 327-343, April.
    8. Alok Kumar Singh & Rohit Kapoor, 2016. "Estimating Demand Using Space Elastic Demand Model for Retail Assortment Planning," Global Business Review, International Management Institute, vol. 17(3), pages 524-540, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Chen & Adam J.Mersereau & Zhe (Frank) Wang, 2017. "Optimal Merchandise Testing with Limited Inventory," Operations Research, INFORMS, vol. 65(4), pages 968-991, August.
    2. Felipe Caro & Victor Martínez-de-Albéniz & Paat Rusmevichientong, 2014. "The Assortment Packing Problem: Multiperiod Assortment Planning for Short-Lived Products," Management Science, INFORMS, vol. 60(11), pages 2701-2721, November.
    3. Jalali, Hamed & Van den Broeke, Maud & Van Nieuwenhuyse, Inneke, 2022. "Platform and product design for markets with quality and feature sensitive customers," International Journal of Production Economics, Elsevier, vol. 244(C).
    4. Kris Johnson Ferreira & Joel Goh, 2021. "Assortment Rotation and the Value of Concealment," Management Science, INFORMS, vol. 67(3), pages 1489-1507, March.
    5. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    6. Jalali, Hamed & Carmen, Raïsa & Van Nieuwenhuyse, Inneke & Boute, Robert, 2019. "Quality and pricing decisions in production/inventory systems," European Journal of Operational Research, Elsevier, vol. 272(1), pages 195-206.
    7. Woonghee Tim Huh & Paat Rusmevichientong, 2009. "A Nonparametric Asymptotic Analysis of Inventory Planning with Censored Demand," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 103-123, February.
    8. Kohei Kawaguchi, 2021. "When Will Workers Follow an Algorithm? A Field Experiment with a Retail Business," Management Science, INFORMS, vol. 67(3), pages 1670-1695, March.
    9. Alp Akcay & Bahar Biller & Sridhar Tayur, 2011. "Improved Inventory Targets in the Presence of Limited Historical Demand Data," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 297-309, July.
    10. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    11. He, Bo & Mirchandani, Prakash & Yang, Guang, 2023. "Offering custom products using a C2M model: Collaborating with an E-commerce platform," International Journal of Production Economics, Elsevier, vol. 262(C).
    12. Maria Mayorga & Hyun-Soo Ahn & Goker Aydin, 2013. "Assortment and inventory decisions with multiple quality levels," Annals of Operations Research, Springer, vol. 211(1), pages 301-331, December.
    13. Li Chen & Yao Cui & Hau L. Lee, 2021. "Retailing with 3D Printing," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 1986-2007, July.
    14. Gel, Esma S. & Salman, F. Sibel, 2022. "Dynamic ordering decisions with approximate learning of supply yield uncertainty," International Journal of Production Economics, Elsevier, vol. 243(C).
    15. Guo, Shu & Choi, Tsan-Ming & Chung, Sai-Ho, 2022. "Self-design fun: Should 3D printing be employed in mass customization operations?," European Journal of Operational Research, Elsevier, vol. 299(3), pages 883-897.
    16. Mila Nambiar & David Simchi‐Levi & He Wang, 2021. "Dynamic Inventory Allocation with Demand Learning for Seasonal Goods," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 750-765, March.
    17. Lacroix, Rachel & Seifert, Ralf W. & Timonina-Farkas, Anna, 2021. "Benefiting from additive manufacturing for mass customization across the product life cycle," Operations Research Perspectives, Elsevier, vol. 8(C).
    18. Shipra Agrawal & Vashist Avadhanula & Vineet Goyal & Assaf Zeevi, 2019. "MNL-Bandit: A Dynamic Learning Approach to Assortment Selection," Operations Research, INFORMS, vol. 67(5), pages 1453-1485, September.
    19. Felipe Caro & Victor Martínez-de-Albéniz, 2012. "Product and Price Competition with Satiation Effects," Management Science, INFORMS, vol. 58(7), pages 1357-1373, July.
    20. Jost, Peter-J. & Süsser, Theresa, 2020. "Company-customer interaction in mass customization," International Journal of Production Economics, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:60:y:2012:i:4:p:833-849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.