IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v42y2017i4p1162-1179.html
   My bibliography  Save this article

A Characterization of Subgame-Perfect Equilibrium Plays in Borel Games of Perfect Information

Author

Listed:
  • János Flesch

    (Department of Quantitative Economics, Maastricht University, 6200 MD Maastricht, Netherlands)

  • Arkadi Predtetchinski

    (Department of Economics, Maastricht University, 6200 MD Maastricht, Netherlands)

Abstract

We provide a characterization of subgame-perfect equilibrium plays in a class of perfect information games where each player’s payoff function is Borel measurable and has finite range. The set of subgame-perfect equilibrium plays is obtained through a process of iterative elimination of plays. Extensions to games with bounded Borel measurable payoff functions are discussed. As an application of our results, we show that if every player’s payoff function is bounded and upper semicontinuous, then, for every positive epsilon, the game admits a subgame-perfect epsilon-equilibrium. As we do not assume that the number of players is finite, this result generalizes the corresponding result of Purves and Sudderth [24] [Purves RA, Sudderth WD (2011) Perfect information games with upper semicontinuous payoffs. Math. Oper. Res. 36(3):468–473].

Suggested Citation

  • János Flesch & Arkadi Predtetchinski, 2017. "A Characterization of Subgame-Perfect Equilibrium Plays in Borel Games of Perfect Information," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1162-1179, November.
  • Handle: RePEc:inm:ormoor:v:42:y:2017:i:4:p:1162-1179
    DOI: 10.1287/moor.2016.0843
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2016.0843
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2016.0843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guilherme Carmona, 2005. "On Games Of Perfect Information: Equilibria, Ε–Equilibria And Approximation By Simple Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 491-499.
    2. Harris, Christopher, 1985. "A characterisation of the perfect equilibria of infinite horizon games," Journal of Economic Theory, Elsevier, vol. 37(1), pages 99-125, October.
    3. Ayala Mashiah-Yaakovi, 2014. "Subgame perfect equilibria in stopping games," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(1), pages 89-135, February.
    4. Solan, Eilon & Vieille, Nicolas, 2003. "Deterministic multi-player Dynkin games," Journal of Mathematical Economics, Elsevier, vol. 39(8), pages 911-929, November.
    5. MERTENS, Jean-François, 1987. "Repeated games. Proceedings of the International Congress of Mathematicians," LIDAM Reprints CORE 788, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Cingiz, Kutay & Flesch, János & Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2016. "Doing it now, later, or never," Games and Economic Behavior, Elsevier, vol. 97(C), pages 174-185.
    7. Carlos Alós-Ferrer & Klaus Ritzberger, 2017. "Characterizing existence of equilibrium for large extensive form games: a necessity result," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(2), pages 407-430, February.
    8. Drew Fudenberg & David Levine, 2008. "Subgame–Perfect Equilibria of Finite– and Infinite–Horizon Games," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 1, pages 3-20, World Scientific Publishing Co. Pte. Ltd..
    9. Roger A. Purves & William D. Sudderth, 2011. "Perfect Information Games with Upper Semicontinuous Payoffs," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 468-473, August.
    10. Eilon Solan, 2005. "Subgame-Perfection in Quitting Games with Perfect Information and Differential Equations," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 51-72, February.
    11. Flesch, J. & Kuipers, J. & Schoenmakers, G. & Vrieze, K., 2013. "Subgame-perfection in free transition games," European Journal of Operational Research, Elsevier, vol. 228(1), pages 201-207.
    12. J. Kuipers & J. Flesch & G. Schoenmakers & K. Vrieze, 2016. "Subgame-perfection in recursive perfect information games, where each player controls one state," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 205-237, March.
    13. Alós-Ferrer, Carlos & Ritzberger, Klaus, 2016. "Equilibrium existence for large perfect information games," Journal of Mathematical Economics, Elsevier, vol. 62(C), pages 5-18.
    14. Łukasz Balbus & Anna Jaśkiewicz & Andrzej S. Nowak, 2015. "Existence of Stationary Markov Perfect Equilibria in Stochastic Altruistic Growth Economies," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 295-315, April.
    15. Harris, Christopher J, 1985. "Existence and Characterization of Perfect Equilibrium in Games of Perfect Information," Econometrica, Econometric Society, vol. 53(3), pages 613-628, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kutay Cingiz & János Flesch & P. Jean-Jacques Herings & Arkadi Predtetchinski, 2020. "Perfect information games where each player acts only once," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(4), pages 965-985, June.
    2. János Flesch & Arkadi Predtetchinski, 2020. "Parameterized games of perfect information," Annals of Operations Research, Springer, vol. 287(2), pages 683-699, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. János Flesch & Arkadi Predtetchinski, 2016. "Subgame-Perfect ϵ-Equilibria in Perfect Information Games with Common Preferences at the Limit," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1208-1221, November.
    2. Jeroen Kuipers & János Flesch & Gijs Schoenmakers & Koos Vrieze, 2021. "Subgame perfection in recursive perfect information games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 603-662, March.
    3. János Flesch & Arkadi Predtetchinski, 2020. "Parameterized games of perfect information," Annals of Operations Research, Springer, vol. 287(2), pages 683-699, April.
    4. Kutay Cingiz & János Flesch & P. Jean-Jacques Herings & Arkadi Predtetchinski, 2020. "Perfect information games where each player acts only once," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(4), pages 965-985, June.
    5. Carlos Alós-Ferrer & Klaus Ritzberger, 2017. "Characterizing existence of equilibrium for large extensive form games: a necessity result," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(2), pages 407-430, February.
    6. János Flesch & Arkadi Predtetchinski, 2016. "Subgame-perfect $$\epsilon $$ ϵ -equilibria in perfect information games with sigma-discrete discontinuities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 479-495, March.
    7. J. Kuipers & J. Flesch & G. Schoenmakers & K. Vrieze, 2016. "Subgame-perfection in recursive perfect information games, where each player controls one state," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 205-237, March.
    8. Francesco Caruso & Maria Carmela Ceparano & Jacqueline Morgan, 2024. "Asymptotic behavior of subgame perfect Nash equilibria in Stackelberg games," Annals of Operations Research, Springer, vol. 336(3), pages 1573-1590, May.
    9. Alós-Ferrer, Carlos & Ritzberger, Klaus, 2021. "Multi-lateral strategic bargaining without stationarity," Journal of Mathematical Economics, Elsevier, vol. 97(C).
    10. He, Wei & Sun, Yeneng, 2020. "Dynamic games with (almost) perfect information," Theoretical Economics, Econometric Society, vol. 15(2), May.
    11. Alós-Ferrer, Carlos & Ritzberger, Klaus, 2016. "Equilibrium existence for large perfect information games," Journal of Mathematical Economics, Elsevier, vol. 62(C), pages 5-18.
    12. János Flesch & Jeroen Kuipers & Ayala Mashiah-Yaakovi & Gijs Schoenmakers & Eran Shmaya & Eilon Solan & Koos Vrieze, 2014. "Non-existence of subgame-perfect $$\varepsilon $$ ε -equilibrium in perfect information games with infinite horizon," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 945-951, November.
    13. Cingiz, Kutay & Flesch, János & Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2016. "Doing it now, later, or never," Games and Economic Behavior, Elsevier, vol. 97(C), pages 174-185.
    14. János Flesch & Jeroen Kuipers & Ayala Mashiah-Yaakovi & Gijs Schoenmakers & Eilon Solan & Koos Vrieze, 2010. "Perfect-Information Games with Lower-Semicontinuous Payoffs," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 742-755, November.
    15. Alós-Ferrer, Carlos & Ritzberger, Klaus, 2017. "Does backwards induction imply subgame perfection?," Games and Economic Behavior, Elsevier, vol. 103(C), pages 19-29.
    16. Echenique, Federico, 2004. "Extensive-form games and strategic complementarities," Games and Economic Behavior, Elsevier, vol. 46(2), pages 348-364, February.
    17. Kuipers, J. & Flesch, J. & Schoenmakers, G. & Vrieze, K., 2009. "Pure subgame-perfect equilibria in free transition games," European Journal of Operational Research, Elsevier, vol. 199(2), pages 442-447, December.
    18. Kuipers, J. & Flesch, J. & Schoenmakers, G.M. & Vrieze, K., 2008. "Pure subgame-perfect equilibria in free transition games," Research Memorandum 027, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    19. Mariotti, Thomas, 2000. "Subgame-perfect equilibrium outcomes in continuous games of almost perfect information1," Journal of Mathematical Economics, Elsevier, vol. 34(1), pages 99-128, August.
    20. Duggan, John, 2017. "Existence of stationary bargaining equilibria," Games and Economic Behavior, Elsevier, vol. 102(C), pages 111-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:42:y:2017:i:4:p:1162-1179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.