IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v228y2013i1p201-207.html
   My bibliography  Save this article

Subgame-perfection in free transition games

Author

Listed:
  • Flesch, J.
  • Kuipers, J.
  • Schoenmakers, G.
  • Vrieze, K.

Abstract

We prove the existence of a subgame-perfect ε-equilibrium, for every ε>0, in a class of multi-player games with perfect information, which we call free transition games. The novelty is that a non-trivial class of perfect information games is solved for subgame-perfection, with multiple non-terminating actions, in which the payoff structure is generally not (upper or lower) semi-continuous. Due to the lack of semi-continuity, there is no general rule of comparison between the payoffs that a player can obtain by deviating a large but finite number of times or, respectively, infinitely many times. We introduce new techniques to overcome this difficulty.

Suggested Citation

  • Flesch, J. & Kuipers, J. & Schoenmakers, G. & Vrieze, K., 2013. "Subgame-perfection in free transition games," European Journal of Operational Research, Elsevier, vol. 228(1), pages 201-207.
  • Handle: RePEc:eee:ejores:v:228:y:2013:i:1:p:201-207
    DOI: 10.1016/j.ejor.2013.01.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713000817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.01.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vidal-Puga, Juan J., 2008. "Forming coalitions and the Shapley NTU value," European Journal of Operational Research, Elsevier, vol. 190(3), pages 659-671, November.
    2. Solan, Eilon & Vieille, Nicolas, 2003. "Deterministic multi-player Dynkin games," Journal of Mathematical Economics, Elsevier, vol. 39(8), pages 911-929, November.
    3. MERTENS, Jean-François, 1987. "Repeated games. Proceedings of the International Congress of Mathematicians," LIDAM Reprints CORE 788, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Weg, Eythan & Zwick, Rami, 1994. "Toward the settlement of the fairness issues in ultimatum games : A bargaining approach," Journal of Economic Behavior & Organization, Elsevier, vol. 24(1), pages 19-34, June.
    5. Vartiainen, Hannu, 2011. "Dynamic coalitional equilibrium," Journal of Economic Theory, Elsevier, vol. 146(2), pages 672-698, March.
    6. Ayala Mashiah-Yaakovi, 2009. "Periodic stopping games," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(2), pages 169-181, June.
    7. Abhinay Muthoo, 1995. "On the Strategic Role of Outside Options in Bilateral Bargaining," Operations Research, INFORMS, vol. 43(2), pages 292-297, April.
    8. Ramsey, David M., 2012. "Partnership formation based on multiple traits," European Journal of Operational Research, Elsevier, vol. 216(3), pages 624-637.
    9. Bloch, Francis, 1996. "Sequential Formation of Coalitions in Games with Externalities and Fixed Payoff Division," Games and Economic Behavior, Elsevier, vol. 14(1), pages 90-123, May.
    10. J. Flesch & J. Kuipers & G. Schoenmakers & K. Vrieze, 2010. "Subgame Perfection in Positive Recursive Games with Perfect Information," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 193-207, February.
    11. Mesquita, Bruce Bueno De & Lalman, David, 1990. "Domestic Opposition and Foreign War," American Political Science Review, Cambridge University Press, vol. 84(3), pages 747-765, September.
    12. Kuipers, J. & Flesch, J. & Schoenmakers, G.M. & Vrieze, K., 2008. "Pure subgame-perfect equilibria in free transition games," Research Memorandum 027, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    13. Reinhard Selten, 1973. "A Simple Model of Imperfect Competition, where 4 are Few and 6 are Many," Center for Mathematical Economics Working Papers 008, Center for Mathematical Economics, Bielefeld University.
    14. Kim, Taekwon & Jeon, Yongil, 2009. "Stationary perfect equilibria of an n-person noncooperative bargaining game and cooperative solution concepts," European Journal of Operational Research, Elsevier, vol. 194(3), pages 922-932, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. János Flesch & Arkadi Predtetchinski, 2017. "A Characterization of Subgame-Perfect Equilibrium Plays in Borel Games of Perfect Information," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1162-1179, November.
    2. J. Kuipers & J. Flesch & G. Schoenmakers & K. Vrieze, 2016. "Subgame-perfection in recursive perfect information games, where each player controls one state," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 205-237, March.
    3. Jeroen Kuipers & János Flesch & Gijs Schoenmakers & Koos Vrieze, 2021. "Subgame perfection in recursive perfect information games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 603-662, March.
    4. János Flesch & Arkadi Predtetchinski, 2016. "Subgame-Perfect ϵ-Equilibria in Perfect Information Games with Common Preferences at the Limit," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1208-1221, November.
    5. Dmitry Ryvkin, 2022. "To Fight or to Give Up? Dynamic Contests with a Deadline," Management Science, INFORMS, vol. 68(11), pages 8144-8165, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flesch, J. & Kuipers, J. & Schoenmakers, G. & Vrieze, K., 2011. "Subgame-perfection in free transition games," Research Memorandum 047, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    2. János Flesch & Jeroen Kuipers & Ayala Mashiah-Yaakovi & Gijs Schoenmakers & Eilon Solan & Koos Vrieze, 2010. "Perfect-Information Games with Lower-Semicontinuous Payoffs," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 742-755, November.
    3. Kuehn, S., 2010. "A new Keynesian model with endogenous technology trend," Research Memorandum 040, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    4. Herings, P.J.J. & Predtetchinski, A., 2013. "Voting in collective stopping games," Research Memorandum 014, Maastricht University, Graduate School of Business and Economics (GSBE).
    5. Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2021. "Simple collective equilibria in stopping games," Journal of Mathematical Economics, Elsevier, vol. 95(C).
    6. Ayala Mashiah-Yaakovi, 2014. "Subgame perfect equilibria in stopping games," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(1), pages 89-135, February.
    7. Steven J. Brams & Mehmet S. Ismail, 2022. "Every normal-form game has a Pareto-optimal nonmyopic equilibrium," Theory and Decision, Springer, vol. 92(2), pages 349-362, March.
    8. J. Kuipers & J. Flesch & G. Schoenmakers & K. Vrieze, 2016. "Subgame-perfection in recursive perfect information games, where each player controls one state," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 205-237, March.
    9. János Flesch & Arkadi Predtetchinski, 2020. "Parameterized games of perfect information," Annals of Operations Research, Springer, vol. 287(2), pages 683-699, April.
    10. P. Jean-Jacques Herings & Harold Houba, 2010. "The Condorcet Paradox Revisited," Tinbergen Institute Discussion Papers 10-026/1, Tinbergen Institute.
    11. Kuipers, J. & Flesch, J. & Schoenmakers, G. & Vrieze, K., 2009. "Pure subgame-perfect equilibria in free transition games," European Journal of Operational Research, Elsevier, vol. 199(2), pages 442-447, December.
    12. Dutta, Bhaskar & Vartiainen, Hannu, 2020. "Coalition formation and history dependence," Theoretical Economics, Econometric Society, vol. 15(1), January.
    13. Morasch, Karl, 2000. "Strategic alliances as Stackelberg cartels - concept and equilibrium alliance structure," International Journal of Industrial Organization, Elsevier, vol. 18(2), pages 257-282, February.
    14. Kuipers, J. & Flesch, J. & Schoenmakers, G.M. & Vrieze, K., 2008. "Pure subgame-perfect equilibria in free transition games," Research Memorandum 027, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    15. Akira Okada, 2015. "Cooperation and Institution in Games," The Japanese Economic Review, Japanese Economic Association, vol. 66(1), pages 1-32, March.
    16. Francis Bloch & Effrosyni Diamantoudi, 2011. "Noncooperative formation of coalitions in hedonic games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 263-280, May.
    17. Flesch, J. & Kuipers, J. & Schoenmakers, G. & Vrieze, K., 2008. "Subgame-perfection in stochastic games with perfect information and recursive payoffs," Research Memorandum 041, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    18. Bhaskar Dutta & Hannu Vartiainen, 2018. "Coalition Formation and History Dependence," Working Papers 1006, Ashoka University, Department of Economics.
    19. Kutay Cingiz & János Flesch & P. Jean-Jacques Herings & Arkadi Predtetchinski, 2020. "Perfect information games where each player acts only once," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(4), pages 965-985, June.
    20. János Flesch & Arkadi Predtetchinski, 2016. "Subgame-Perfect ϵ-Equilibria in Perfect Information Games with Common Preferences at the Limit," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1208-1221, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:228:y:2013:i:1:p:201-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.