IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i1p487-508.html
   My bibliography  Save this article

Hidden Experts in the Crowd: Using Meta-Predictions to Leverage Expertise in Single-Question Prediction Problems

Author

Listed:
  • Tom Wilkening

    (Department of Economics, The University of Melbourne, Parkville, Victoria 3010, Australia)

  • Marcellin Martinie

    (Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia)

  • Piers D. L. Howe

    (Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia)

Abstract

Modern forecasting algorithms use the wisdom of crowds to produce forecasts better than those of the best identifiable expert. However, these algorithms may be inaccurate when crowds are systematically biased or when expertise varies substantially across forecasters. Recent work has shown that meta-predictions—a forecast of the average forecasts of others—can be used to correct for biases even when no external information, such as forecasters’ past performance, is available. We explore whether meta-predictions can also be used to improve forecasts by identifying and leveraging the expertise of forecasters. We develop a confidence-based version of the Surprisingly Popular algorithm proposed by Prelec, Seung, and McCoy. As with the original algorithm, our new algorithm is robust to bias. However, unlike the original algorithm, our version is predicted to always weight forecasters with more informative private signals more than forecasters with less informative ones. In a series of experiments, we find that the modified algorithm does a better job in weighting informed forecasters than the original algorithm and show that individuals who are correct more often on similar decision problems contribute more to the final decision than other forecasters. Empirically, the modified algorithm outperforms the original algorithm for a set of 500 decision problems.

Suggested Citation

  • Tom Wilkening & Marcellin Martinie & Piers D. L. Howe, 2022. "Hidden Experts in the Crowd: Using Meta-Predictions to Leverage Expertise in Single-Question Prediction Problems," Management Science, INFORMS, vol. 68(1), pages 487-508, January.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:1:p:487-508
    DOI: 10.1287/mnsc.2020.3919
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2020.3919
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2020.3919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ville A. Satopää & Robin Pemantle & Lyle H. Ungar, 2016. "Modeling Probability Forecasts via Information Diversity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1623-1633, October.
    2. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    3. Dražen Prelec & H. Sebastian Seung & John McCoy, 2017. "A solution to the single-question crowd wisdom problem," Nature, Nature, vol. 541(7638), pages 532-535, January.
    4. David V. Budescu & Eva Chen, 2015. "Identifying Expertise to Extract the Wisdom of Crowds," Management Science, INFORMS, vol. 61(2), pages 267-280, February.
    5. repec:cup:judgdm:v:12:y:2017:i:4:p:328-343 is not listed on IDEAS
    6. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    7. Johannes Müller-Trede & Shoham Choshen-Hillel & Meir Barneron & Ilan Yaniv, 2017. "The Wisdom of Crowds in Matters of Taste," Discussion Paper Series dp709, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    8. David Court & Benjamin Gillen & Jordi McKenzie & Charles R. Plott, 2018. "Two information aggregation mechanisms for predicting the opening weekend box office revenues of films: Boxoffice Prophecy and Guess of Guesses," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 65(1), pages 25-54, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    2. Cem Peker, 2023. "Extracting the collective wisdom in probabilistic judgments," Theory and Decision, Springer, vol. 94(3), pages 467-501, April.
    3. Satopää, Ville A., 2021. "Improving the wisdom of crowds with analysis of variance of predictions of related outcomes," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1728-1747.
    4. Satopää, Ville A. & Salikhov, Marat & Tetlock, Philip E. & Mellers, Barbara, 2023. "Decomposing the effects of crowd-wisdom aggregators: The bias–information–noise (BIN) model," International Journal of Forecasting, Elsevier, vol. 39(1), pages 470-485.
    5. Asa B. Palley & Jack B. Soll, 2019. "Extracting the Wisdom of Crowds When Information Is Shared," Management Science, INFORMS, vol. 67(5), pages 2291-2309, May.
    6. Mauro Costantini & Ulrich Gunter & Robert M. Kunst, 2017. "Forecast Combinations in a DSGE‐VAR Lab," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(3), pages 305-324, April.
    7. Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
    8. Benchimol, Jonathan & El-Shagi, Makram & Saadon, Yossi, 2022. "Do expert experience and characteristics affect inflation forecasts?," Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 205-226.
    9. Jaspersen, Johannes G., 2022. "Convex combinations in judgment aggregation," European Journal of Operational Research, Elsevier, vol. 299(2), pages 780-794.
    10. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    11. Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015. "Optimal combination of survey forecasts," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
    12. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    13. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
    14. Sebastian M. Blanc & Thomas Setzer, 2020. "Bias–Variance Trade-Off and Shrinkage of Weights in Forecast Combination," Management Science, INFORMS, vol. 66(12), pages 5720-5737, December.
    15. Jakub Nowotarski & Rafał Weron, 2015. "Computing electricity spot price prediction intervals using quantile regression and forecast averaging," Computational Statistics, Springer, vol. 30(3), pages 791-803, September.
    16. Dimitrios I. Vortelinos & Konstantinos Gkillas, 2018. "Intraday realised volatility forecasting and announcements," International Journal of Banking, Accounting and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 88-118.
    17. Constantin Burgi, 2015. "Can A Subset Of Forecasters Beat The Simple Average In The Spf?," Working Papers 2015-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    18. Marcellin Martinie & Tom Wilkening & Piers D L Howe, 2020. "Using meta-predictions to identify experts in the crowd when past performance is unknown," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-11, April.
    19. Yongchen Zhao, 2021. "The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms," Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
    20. Lisheng He & Pantelis P. Analytis & Sudeep Bhatia, 2022. "The Wisdom of Model Crowds," Management Science, INFORMS, vol. 68(5), pages 3635-3659, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:1:p:487-508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.