IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0232058.html
   My bibliography  Save this article

Using meta-predictions to identify experts in the crowd when past performance is unknown

Author

Listed:
  • Marcellin Martinie
  • Tom Wilkening
  • Piers D L Howe

Abstract

A common approach to improving probabilistic forecasts is to identify and leverage the forecasts from experts in the crowd based on forecasters’ performance on prior questions with known outcomes. However, such information is often unavailable to decision-makers on many forecasting problems, and thus it can be difficult to identify and leverage expertise. In the current paper, we propose a novel algorithm for aggregating probabilistic forecasts using forecasters’ meta-predictions about what other forecasters will predict. We test the performance of an extremised version of our algorithm against current forecasting approaches in the literature and show that our algorithm significantly outperforms all other approaches on a large collection of 500 binary decision problems varying in five levels of difficulty. The success of our algorithm demonstrates the potential of using meta-predictions to leverage latent expertise in environments where forecasters’ expertise cannot otherwise be easily identified.

Suggested Citation

  • Marcellin Martinie & Tom Wilkening & Piers D L Howe, 2020. "Using meta-predictions to identify experts in the crowd when past performance is unknown," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-11, April.
  • Handle: RePEc:plo:pone00:0232058
    DOI: 10.1371/journal.pone.0232058
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232058
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0232058&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0232058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David V. Budescu & Eva Chen, 2015. "Identifying Expertise to Extract the Wisdom of Crowds," Management Science, INFORMS, vol. 61(2), pages 267-280, February.
    2. Jonathan Baron & Barbara A. Mellers & Philip E. Tetlock & Eric Stone & Lyle H. Ungar, 2014. "Two Reasons to Make Aggregated Probability Forecasts More Extreme," Decision Analysis, INFORMS, vol. 11(2), pages 133-145, June.
    3. Ville A. Satopää & Robin Pemantle & Lyle H. Ungar, 2016. "Modeling Probability Forecasts via Information Diversity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1623-1633, October.
    4. repec:cup:judgdm:v:14:y:2019:i:2:p:135-147 is not listed on IDEAS
    5. Asa B. Palley & Jack B. Soll, 2019. "Extracting the Wisdom of Crowds When Information Is Shared," Management Science, INFORMS, vol. 67(5), pages 2291-2309, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shinitzky, Hilla & Shemesh, Yhonatan & Leiser, David & Gilead, Michael, 2024. "Improving geopolitical forecasts with 100 brains and one computer," International Journal of Forecasting, Elsevier, vol. 40(3), pages 958-970.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satopää, Ville A. & Salikhov, Marat & Tetlock, Philip E. & Mellers, Barbara, 2023. "Decomposing the effects of crowd-wisdom aggregators: The bias–information–noise (BIN) model," International Journal of Forecasting, Elsevier, vol. 39(1), pages 470-485.
    2. Keppo, Jussi & Satopää, Ville A., 2024. "Bayesian herd detection for dynamic data," International Journal of Forecasting, Elsevier, vol. 40(1), pages 285-301.
    3. Satopää, Ville A., 2021. "Improving the wisdom of crowds with analysis of variance of predictions of related outcomes," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1728-1747.
    4. repec:cup:judgdm:v:14:y:2019:i:4:p:395-411 is not listed on IDEAS
    5. Jaspersen, Johannes G., 2022. "Convex combinations in judgment aggregation," European Journal of Operational Research, Elsevier, vol. 299(2), pages 780-794.
    6. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    7. Saul Estrin & Susanna Khavul & Mike Wright, 2022. "Soft and hard information in equity crowdfunding: network effects in the digitalization of entrepreneurial finance," Small Business Economics, Springer, vol. 58(4), pages 1761-1781, April.
    8. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    9. Anca M. Hanea & Marissa F. McBride & Mark A. Burgman & Bonnie C. Wintle, 2018. "The Value of Performance Weights and Discussion in Aggregated Expert Judgments," Risk Analysis, John Wiley & Sons, vol. 38(9), pages 1781-1794, September.
    10. Tang, Ming & Liao, Huchang, 2024. "Group efficiency and individual fairness tradeoff in making wise decisions," Omega, Elsevier, vol. 124(C).
    11. Ying Han & David Budescu, 2019. "A universal method for evaluating the quality of aggregators," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 14(4), pages 395-411, July.
    12. Yanwei Jia & Jussi Keppo & Ville Satopää, 2023. "Herding in Probabilistic Forecasts," Management Science, INFORMS, vol. 69(5), pages 2713-2732, May.
    13. Cem Peker, 2023. "Extracting the collective wisdom in probabilistic judgments," Theory and Decision, Springer, vol. 94(3), pages 467-501, April.
    14. Tom Wilkening & Marcellin Martinie & Piers D. L. Howe, 2022. "Hidden Experts in the Crowd: Using Meta-Predictions to Leverage Expertise in Single-Question Prediction Problems," Management Science, INFORMS, vol. 68(1), pages 487-508, January.
    15. Asa B. Palley & Jack B. Soll, 2019. "Extracting the Wisdom of Crowds When Information Is Shared," Management Science, INFORMS, vol. 67(5), pages 2291-2309, May.
    16. Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.
    17. Ming Tang & Huchang Liao, 2023. "Group Structure and Information Distribution on the Emergence of Collective Intelligence," Decision Analysis, INFORMS, vol. 20(2), pages 133-150, June.
    18. Vitalii Antoshchuk & Volodymyr Filippov & Varvara Kuvaieva, 2021. "Development of methodological support for improving the quality of expert assessment of business processes," Technology audit and production reserves, Socionet;Technology audit and production reserves, vol. 1(4(57)), pages 22-27.
    19. Dan Zhu & Qingwei Wang & John Goddard, 2022. "A new hedging hypothesis regarding prediction interval formation in stock price forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 697-717, July.
    20. David R. Mandel & Daniel Irwin, 2021. "Tracking accuracy of strategic intelligence forecasts: Findings from a long‐term Canadian study," Futures & Foresight Science, John Wiley & Sons, vol. 3(3-4), September.
    21. repec:cup:judgdm:v:15:y:2020:i:5:p:863-880 is not listed on IDEAS
    22. Bernd Frick & Franziska Prockl, 2018. "Information Precision In Online Communities: Player Valuations On Www.Transfermarkt.De," Working Papers Dissertations 37, Paderborn University, Faculty of Business Administration and Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0232058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.