IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v65y2019i11p5197-5218.html
   My bibliography  Save this article

How Do Sales Efforts Pay Off? Dynamic Panel Data Analysis in the Nerlove–Arrow Framework

Author

Listed:
  • Doug J. Chung

    (Harvard Business School, Harvard University, Boston, Massachusetts 02163)

  • Byungyeon Kim

    (Harvard Business School, Harvard University, Boston, Massachusetts 02163)

  • Byoung G. Park

    (University at Albany, State University of New York, Albany, New York 12222)

Abstract

This paper evaluates the short- and long-term value of sales representatives’ detailing visits to different types of physicians. By understanding the dynamic effect of sales calls across heterogeneous physicians, we provide guidance on the design of optimal call patterns for route sales. The findings reveal that the long-term persistence effect of detailing is more pronounced for specialist physicians, whereas the contemporaneous marginal effect is higher for generalists. The paper also provides a key methodological insight to the marketing and economics literature. In the Nerlove–Arrow framework, moment conditions that are typically used in conventional dynamic panel data methods become vulnerable to serial correlation in the error structure. We discuss the associated biases and present a robust set of moment conditions for both lagged dependent and predetermined explanatory variables. Furthermore, we show that conventional tests to detect serial correlation have weak power, resulting in the misuse of moment conditions that leads to incorrect inference. Theoretical illustrations and Monte Carlo simulations are provided for validation.

Suggested Citation

  • Doug J. Chung & Byungyeon Kim & Byoung G. Park, 2019. "How Do Sales Efforts Pay Off? Dynamic Panel Data Analysis in the Nerlove–Arrow Framework," Management Science, INFORMS, vol. 65(11), pages 5197-5218, November.
  • Handle: RePEc:inm:ormnsc:v:65:y:2019:i:11:p:5197-5218
    DOI: 10.1287/mnsc.2018.3189
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/mnsc.2018.3189
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2018.3189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hatanaka, Michio, 1974. "An efficient two-step estimator for the dynamic adjustment model with autoregressive errors," Journal of Econometrics, Elsevier, vol. 2(3), pages 199-220, September.
    2. Eric Neumayer, 2004. "The Impact of Political Violence on Tourism," Journal of Conflict Resolution, Peace Science Society (International), vol. 48(2), pages 259-281, April.
    3. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    4. Gordon Burtch & Anindya Ghose & Sunil Wattal, 2013. "An Empirical Examination of the Antecedents and Consequences of Contribution Patterns in Crowd-Funded Markets," Information Systems Research, INFORMS, vol. 24(3), pages 499-519, September.
    5. Hausman, Jerry A & Taylor, William E, 1981. "Panel Data and Unobservable Individual Effects," Econometrica, Econometric Society, vol. 49(6), pages 1377-1398, November.
    6. Milton Friedman, 1957. "Introduction to "A Theory of the Consumption Function"," NBER Chapters, in: A Theory of the Consumption Function, pages 1-6, National Bureau of Economic Research, Inc.
    7. Daron Acemoglu & Simon Johnson & James A. Robinson & Pierre Yared, 2008. "Income and Democracy," American Economic Review, American Economic Association, vol. 98(3), pages 808-842, June.
    8. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    9. Hirunyawipada, Tanawat & Xiong, Guiyang, 2018. "Corporate environmental commitment and financial performance: Moderating effects of marketing and operations capabilities," Journal of Business Research, Elsevier, vol. 86(C), pages 22-31.
    10. Milton Friedman, 1957. "A Theory of the Consumption Function," NBER Books, National Bureau of Economic Research, Inc, number frie57-1.
    11. Bowsher, Clive G., 2002. "On testing overidentifying restrictions in dynamic panel data models," Economics Letters, Elsevier, vol. 77(2), pages 211-220, October.
    12. Jun Ye & Beibei Dong & Ju-Yeon Lee, 2017. "The long-term impact of service empathy and responsiveness on customer satisfaction and profitability: a longitudinal investigation in a healthcare context," Marketing Letters, Springer, vol. 28(4), pages 551-564, December.
    13. Nerlove, Marc, 1958. "Distributed Lags and Demand Analysis for Agricultural and Other Commodities," Technical Resources 316559, United States Department of Agriculture, Agricultural Marketing Service, Transportation and Marketing Program.
    14. Sander Triest & Maurice Bun & Erik Raaij & Maarten Vernooij, 2009. "The impact of customer-specific marketing expenses on customer retention and customer profitability," Marketing Letters, Springer, vol. 20(2), pages 125-138, June.
    15. Puneet Manchanda & Pradeep K. Chintagunta, 2004. "Responsiveness of Physician Prescription Behavior to Salesforce Effort: An Individual Level Analysis," Marketing Letters, Springer, vol. 15(2_3), pages 129-145, July.
    16. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    17. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    18. Ramkumar Janakiraman & Shantanu Dutta & Catarina Sismeiro & Philip Stern, 2008. "Physicians' Persistence and Its Implications for Their Response to Promotion of Prescription Drugs," Management Science, INFORMS, vol. 54(6), pages 1080-1093, June.
    19. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    20. Mathys, Juliane & Burmester, Alexa B. & Clement, Michel, 2016. "What drives the market popularity of celebrities? A longitudinal analysis of consumer interest in film stars," International Journal of Research in Marketing, Elsevier, vol. 33(2), pages 428-448.
    21. Philippe Aghion & Steven Durlauf (ed.), 2005. "Handbook of Economic Growth," Handbook of Economic Growth, Elsevier, edition 1, volume 1, number 1.
    22. Breusch, Trevor S & Mizon, Grayham E & Schmidt, Peter, 1989. "Efficient Estimation Using Panel Data," Econometrica, Econometric Society, vol. 57(3), pages 695-700, May.
    23. Doug J. Chung, 2017. "How Much Is a Win Worth? An Application to Intercollegiate Athletics," Management Science, INFORMS, vol. 63(2), pages 548-565, February.
    24. Om Narasimhan & Surendra Rajiv & Shantanu Dutta, 2006. "Absorptive Capacity in High-Technology Markets: The Competitive Advantage of the Haves," Marketing Science, INFORMS, vol. 25(5), pages 510-524, September.
    25. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    26. Terris-Prestholt, Fern & Windmeijer, Frank, 2016. "How to sell a condom? The impact of demand creation tools on male and female condom sales in resource limited settings," Journal of Health Economics, Elsevier, vol. 48(C), pages 107-120.
    27. David Paton, 2002. "Advertising, quality and sales," Applied Economics, Taylor & Francis Journals, vol. 34(4), pages 431-438.
    28. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    29. C. Clark & Ulrich Doraszelski & Michaela Draganska, 2009. "The effect of advertising on brand awareness and perceived quality: An empirical investigation using panel data," Quantitative Marketing and Economics (QME), Springer, vol. 7(2), pages 207-236, June.
    30. Amemiya, Takeshi & MaCurdy, Thomas E, 1986. "Instrumental-Variable Estimation of an Error-Components Model," Econometrica, Econometric Society, vol. 54(4), pages 869-880, July.
    31. Hosung Jung, 2005. "A Test for Autocorrelation in Dynamic Panel Data Models," Hi-Stat Discussion Paper Series d04-77, Institute of Economic Research, Hitotsubashi University.
    32. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    33. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    34. Lee, Nayoung & Moon, Hyungsik Roger & Zhou, Qiankun, 2017. "Many IVs estimation of dynamic panel regression models with measurement error," Journal of Econometrics, Elsevier, vol. 200(2), pages 251-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cave, Joshua & Chaudhuri, Kausik & Kumbhakar, Subal C., 2023. "Dynamic firm performance and estimator choice: A comparison of dynamic panel data estimators," European Journal of Operational Research, Elsevier, vol. 307(1), pages 447-467.
    2. Meyer, Anne & Glock, Katharina & Radaschewski, Frank, 2021. "Planning profitable tours for field sales forces: A unified view on sales analytics and mathematical optimization," Omega, Elsevier, vol. 105(C).
    3. Reza Mousavi & Bin Gu, 2024. "Resilience Messaging: The Effect of Governors’ Social Media Communications on Community Compliance During a Public Health Crisis," Information Systems Research, INFORMS, vol. 35(2), pages 505-527, June.
    4. Wang, Banban & Wei, Jie & Tan, Xiujie & Su, Bin, 2021. "The sectorally heterogeneous and time-varying price elasticities of energy demand in China," Energy Economics, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    2. Sebastian Kripfganz & Claudia Schwarz, 2019. "Estimation of linear dynamic panel data models with time‐invariant regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(4), pages 526-546, June.
    3. Jean-Louis ARCAND & Béatrice D'HOMBRES, 2002. "Explaining the Negative Coefficient Associated with Human Capital in Augmented Solow Growth Regressions," Working Papers 200227, CERDI.
    4. Donald W.K. Andrews & Biao Lu, 1999. "Consistent Model and Moment Selection Criteria for GMM Estimation with Applications to Dynamic Panel Data Models," Cowles Foundation Discussion Papers 1233, Cowles Foundation for Research in Economics, Yale University.
    5. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
    6. Jan F. Kiviet, 2005. "Judging Contending Estimators by Simulation: Tournaments in Dynamic Panel Data Models," Tinbergen Institute Discussion Papers 05-112/4, Tinbergen Institute.
    7. Che, Yi & Lu, Yi & Tao, Zhigang & Wang, Peng, 2013. "The impact of income on democracy revisited," Journal of Comparative Economics, Elsevier, vol. 41(1), pages 159-169.
    8. Hayakawa, Kazuhiko & Nagata, Shuichi, 2016. "On the behaviour of the GMM estimator in persistent dynamic panel data models with unrestricted initial conditions," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 265-303.
    9. James Alm & Asmaa El-Ganainy, 2013. "Value-added taxation and consumption," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(1), pages 105-128, February.
    10. Badi H. Baltagi & Chihwa Kao, 2000. "Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey," Center for Policy Research Working Papers 16, Center for Policy Research, Maxwell School, Syracuse University.
    11. Yang, Yimin & Schmidt, Peter, 2021. "An econometric approach to the estimation of multi-level models," Journal of Econometrics, Elsevier, vol. 220(2), pages 532-543.
    12. Vieira, Flávio & MacDonald, Ronald & Damasceno, Aderbal, 2012. "The role of institutions in cross-section income and panel data growth models: A deeper investigation on the weakness and proliferation of instruments," Journal of Comparative Economics, Elsevier, vol. 40(1), pages 127-140.
    13. Bun, Maurice J.G. & Kiviet, Jan F., 2006. "The effects of dynamic feedbacks on LS and MM estimator accuracy in panel data models," Journal of Econometrics, Elsevier, vol. 132(2), pages 409-444, June.
    14. Jacques Mairesse & Bronwyn H. Hall & Benoît Mulkay, 1999. "Firm-Level Investment in France and the United States: An Exploration of What We Have Learned in Twenty Years," Annals of Economics and Statistics, GENES, issue 55-56, pages 27-67.
    15. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    16. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    17. Michael Lee & Ritchard Longmire & Laszlo Matyas & Mark Harris, 1998. "Growth convergence: some panel data evidence," Applied Economics, Taylor & Francis Journals, vol. 30(7), pages 907-912.
    18. Binder, Michael & Hsiao, Cheng & Pesaran, M. Hashem, 2005. "Estimation And Inference In Short Panel Vector Autoregressions With Unit Roots And Cointegration," Econometric Theory, Cambridge University Press, vol. 21(4), pages 795-837, August.
    19. William Hauk & Romain Wacziarg, 2009. "A Monte Carlo study of growth regressions," Journal of Economic Growth, Springer, vol. 14(2), pages 103-147, June.
    20. Sarafidis, Vasilis & Yamagata, Takashi & Robertson, Donald, 2009. "A test of cross section dependence for a linear dynamic panel model with regressors," Journal of Econometrics, Elsevier, vol. 148(2), pages 149-161, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:65:y:2019:i:11:p:5197-5218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.