IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v55y2009i5p727-737.html
   My bibliography  Save this article

An Optimal Contact Model for Maximizing Online Panel Response Rates

Author

Listed:
  • Scott A. Neslin

    (Tuck School of Business, Dartmouth College, Hanover, New Hampshire 03755)

  • Thomas P. Novak

    (A. Gary Anderson Graduate School of Management, University of California, Riverside, Riverside, California 92521)

  • Kenneth R. Baker

    (Tuck School of Business, Dartmouth College, Hanover, New Hampshire 03755)

  • Donna L. Hoffman

    (A. Gary Anderson Graduate School of Management, University of California, Riverside, Riverside, California 92521)

Abstract

We develop and test an optimization model for maximizing response rates for online marketing research survey panels. The model consists of (1) a decision tree predictive model that classifies panelists into "states" and forecasts the response rate for panelists in each state and (2) a linear program that specifies how many panelists should be solicited from each state to maximize response rate. The model is forward looking in that it optimizes over a finite horizon during which S studies are to be fielded. It takes into account the desired number of responses for each study, the likely migration pattern of panelists between states as they are invited and respond or do not respond, as well as demographic requirements. The model is implemented using a rolling horizon whereby the optimal solution for S successive studies is derived and implemented for the first study. Then, as results are observed, an optimal solution is derived for the next S studies, and the solution is implemented for the first of these studies, etc. The procedure is field tested and shown to increase response rates significantly compared to the heuristic currently being used by panel management. Further analysis suggests that the improvement was due to the predictive model and that a "greedy algorithm" would have done equally well in the field test. However, further Monte Carlo simulations suggest circumstances under which the model would outperform the greedy algorithm.

Suggested Citation

  • Scott A. Neslin & Thomas P. Novak & Kenneth R. Baker & Donna L. Hoffman, 2009. "An Optimal Contact Model for Maximizing Online Panel Response Rates," Management Science, INFORMS, vol. 55(5), pages 727-737, May.
  • Handle: RePEc:inm:ormnsc:v:55:y:2009:i:5:p:727-737
    DOI: 10.1287/mnsc.1080.0969
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1080.0969
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1080.0969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Duncan I. Simester & Peng Sun & John N. Tsitsiklis, 2006. "Dynamic Catalog Mailing Policies," Management Science, INFORMS, vol. 52(5), pages 683-696, May.
    2. Gabriel R. Bitran & Susana V. Mondschein, 1996. "Mailing Decisions in the Catalog Sales Industry," Management Science, INFORMS, vol. 42(9), pages 1364-1381, September.
    3. Ralf Elsner & Manfred Krafft & Arnd Huchzermeier, 2003. "Optimizing Rhenania's Mail-Order Business Through Dynamic Multilevel Modeling (DMLM)," Interfaces, INFORMS, vol. 33(1), pages 50-66, February.
    4. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    5. John O. McClain & Joseph Thomas, 1977. "Horizon Effects in Aggregate Production Planning with Seasonal Demand," Management Science, INFORMS, vol. 23(7), pages 728-736, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allen, B.J. & Dholakia, Utpal M. & Basuroy, Suman, 2016. "The Economic Benefits to Retailers from Customer Participation in Proprietary Web Panels," Journal of Retailing, Elsevier, vol. 92(2), pages 147-161.
    2. Aurélie Lemmens & Sunil Gupta, 2020. "Managing Churn to Maximize Profits," Marketing Science, INFORMS, vol. 39(5), pages 956-973, September.
    3. Jiménez, Fernando R. & Mendoza, Norma A., 2013. "Too Popular to Ignore: The Influence of Online Reviews on Purchase Intentions of Search and Experience Products," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 226-235.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    2. Blattberg, Robert C. & Malthouse, Edward C. & Neslin, Scott A., 2009. "Customer Lifetime Value: Empirical Generalizations and Some Conceptual Questions," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 157-168.
    3. Durango-Cohen, Elizabeth J., 2013. "Modeling contribution behavior in fundraising: Segmentation analysis for a public broadcasting station," European Journal of Operational Research, Elsevier, vol. 227(3), pages 538-551.
    4. Mercedes Esteban-Bravo & Jose M. Vidal-Sanz & Gökhan Yildirim, 2014. "Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition," Marketing Science, INFORMS, vol. 33(5), pages 621-640, September.
    5. Nicholas G. Hall & Marc E. Posner & Chris N. Potts, 2021. "Online production planning to maximize the number of on-time orders," Annals of Operations Research, Springer, vol. 298(1), pages 249-269, March.
    6. Giuliano Tirenni & Abderrahim Labbi & Cesar Berrospi & André Elisseeff & Timir Bhose & Kari Pauro & Seppo Pöyhönen, 2007. "—Customer Equity and Lifetime Management (CELM) Finnair Case Study," Marketing Science, INFORMS, vol. 26(4), pages 553-565, 07-08.
    7. Duncan I. Simester & Peng Sun & John N. Tsitsiklis, 2006. "Dynamic Catalog Mailing Policies," Management Science, INFORMS, vol. 52(5), pages 683-696, May.
    8. Sunil Gupta & Valarie Zeithaml, 2006. "Customer Metrics and Their Impact on Financial Performance," Marketing Science, INFORMS, vol. 25(6), pages 718-739, 11-12.
    9. Verhoef, Peter C. & Venkatesan, Rajkumar & McAlister, Leigh & Malthouse, Edward C. & Krafft, Manfred & Ganesan, Shankar, 2010. "CRM in Data-Rich Multichannel Retailing Environments: A Review and Future Research Directions," Journal of Interactive Marketing, Elsevier, vol. 24(2), pages 121-137.
    10. Durango-Cohen, Elizabeth J. & Torres, Ramón L. & Durango-Cohen, Pablo L., 2013. "Donor Segmentation: When Summary Statistics Don't Tell the Whole Story," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 172-184.
    11. Romana Khan & Michael Lewis & Vishal Singh, 2009. "Dynamic Customer Management and the Value of One-to-One Marketing," Marketing Science, INFORMS, vol. 28(6), pages 1063-1079, 11-12.
    12. Dimitris Bertsimas & Adam J. Mersereau, 2007. "A Learning Approach for Interactive Marketing to a Customer Segment," Operations Research, INFORMS, vol. 55(6), pages 1120-1135, December.
    13. George, Morris & Kumar, V. & Grewal, Dhruv, 2013. "Maximizing Profits for a Multi-Category Catalog Retailer," Journal of Retailing, Elsevier, vol. 89(4), pages 374-396.
    14. A. Prinzie & D. Van Den Poel, 2005. "Constrained optimization of data-mining problems to improve model performance: A direct-marketing application," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/298, Ghent University, Faculty of Economics and Business Administration.
    15. Sarkar, Mainak & De Bruyn, Arnaud, 2021. "LSTM Response Models for Direct Marketing Analytics: Replacing Feature Engineering with Deep Learning," Journal of Interactive Marketing, Elsevier, vol. 53(C), pages 80-95.
    16. Shie Mannor & Duncan Simester & Peng Sun & John N. Tsitsiklis, 2007. "Bias and Variance Approximation in Value Function Estimates," Management Science, INFORMS, vol. 53(2), pages 308-322, February.
    17. Klein, Robert & Kolb, Johannes, 2015. "Maximizing customer equity subject to capacity constraints," Omega, Elsevier, vol. 55(C), pages 111-125.
    18. Philipp Afèche & Mojtaba Araghi & Opher Baron, 2017. "Customer Acquisition, Retention, and Service Access Quality: Optimal Advertising, Capacity Level, and Capacity Allocation," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 674-691, October.
    19. Seksan Kiatsupaibul & Robert L. Smith & Zelda B. Zabinsky, 2016. "Solving infinite horizon optimization problems through analysis of a one-dimensional global optimization problem," Journal of Global Optimization, Springer, vol. 66(4), pages 711-727, December.
    20. Charles, Mehdi & Dauzère-Pérès, Stéphane & Kedad-Sidhoum, Safia & Mazhoud, Issam, 2022. "Motivations and analysis of the capacitated lot-sizing problem with setup times and minimum and maximum ending inventories," European Journal of Operational Research, Elsevier, vol. 302(1), pages 203-220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:55:y:2009:i:5:p:727-737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.