IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v26y2007i4p553-565.html
   My bibliography  Save this article

—Customer Equity and Lifetime Management (CELM) Finnair Case Study

Author

Listed:
  • Giuliano Tirenni

    (IBM Research, Zurich Research Laboratory, Saeumerstrasse 4, 8803 Rueschlikon, Switzerland and Marc Brandis Strategic Consulting, Grafenauweg 3, 6300 Zug, Switzerland)

  • Abderrahim Labbi

    (IBM Research, Zurich Research Laboratory, Saeumerstrasse 4, 8803 Rueschlikon, Switzerland)

  • Cesar Berrospi

    (IBM Research, Zurich Research Laboratory, Saeumerstrasse 4, 8803 Rueschlikon, Switzerland)

  • André Elisseeff

    (IBM Research, Zurich Research Laboratory, Saeumerstrasse 4, 8803 Rueschlikon, Switzerland)

  • Timir Bhose

    (Finnair Oyj, Lentäjäntie 3, Helsinki Airport, 01053 Helsinki, Finland)

  • Kari Pauro

    (Finnair Oyj, Lentäjäntie 3, Helsinki Airport, 01053 Helsinki, Finland)

  • Seppo Pöyhönen

    (Finnair Oyj, Lentäjäntie 3, Helsinki Airport, 01053 Helsinki, Finland)

Abstract

The Customer Equity and Lifetime Management (CELM) solution is based on a decision-support system that offers marketing managers a scientific framework for the optimal planning and budgeting of targeted marketing campaigns to maximize return on marketing investments. The CELM technology combines advanced models of Markov decision processes (MDPs), Monte Carlo simulation, and portfolio optimization. MDPs are used to model customer dynamics and to find optimal marketing policies that maximize the value generated by a customer over a given time horizon. Lifetime value optimization is achieved through dynamic programming algorithms that identify which marketing actions, such as cross-selling, up-selling, and loyalty marketing campaigns, transition customers to better value and loyalty states. The CELM technology can also be used to simulate the financial impact of a given marketing policy using Monte Carlo simulation. This allows marketing managers to simulate several targeting scenarios to assess budget requirements and the expected impact of a given marketing policy. The benefits of the solution are illustrated with the Finnair case study, where CELM has been used to optimize marketing planning and budgeting for Finnair's frequent-flyer program (FFP).

Suggested Citation

  • Giuliano Tirenni & Abderrahim Labbi & Cesar Berrospi & André Elisseeff & Timir Bhose & Kari Pauro & Seppo Pöyhönen, 2007. "—Customer Equity and Lifetime Management (CELM) Finnair Case Study," Marketing Science, INFORMS, vol. 26(4), pages 553-565, 07-08.
  • Handle: RePEc:inm:ormksc:v:26:y:2007:i:4:p:553-565
    DOI: 10.1287/mksc.1060.0249
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1060.0249
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1060.0249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    2. Duncan I. Simester & Peng Sun & John N. Tsitsiklis, 2006. "Dynamic Catalog Mailing Policies," Management Science, INFORMS, vol. 52(5), pages 683-696, May.
    3. Roland T. Rust & Peter C. Verhoef, 2005. "Optimizing the Marketing Interventions Mix in Intermediate-Term CRM," Marketing Science, INFORMS, vol. 24(3), pages 477-489, December.
    4. Gabriel R. Bitran & Susana V. Mondschein, 1996. "Mailing Decisions in the Catalog Sales Industry," Management Science, INFORMS, vol. 42(9), pages 1364-1381, September.
    5. Ronald A. Howard, 2002. "Comments on the Origin and Application of Markov Decision Processes," Operations Research, INFORMS, vol. 50(1), pages 100-102, February.
    6. Füsun Gönül & Meng Ze Shi, 1998. "Optimal Mailing of Catalogs: A New Methodology Using Estimable Structural Dynamic Programming Models," Management Science, INFORMS, vol. 44(9), pages 1249-1262, September.
    7. W-K Ching & M K Ng & K-K Wong & E Altman, 2004. "Customer lifetime value: stochastic optimization approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 860-868, August.
    8. Steven M. Shugan, 2005. "Brand Loyalty Programs: Are They Shams?," Marketing Science, INFORMS, vol. 24(2), pages 185-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matsuoka, Kohsuke, 2021. "A framework for variance analysis of customer equity based on a Markov chain model," Journal of Business Research, Elsevier, vol. 129(C), pages 57-69.
    2. Hamidreza Koosha & Amir Albadvi, 2020. "Allocation of marketing budgets to maximize customer equity," Operational Research, Springer, vol. 20(2), pages 561-583, June.
    3. Kohsuke Matsuoka, 2020. "Exploring the interface between management accounting and marketing: a literature review of customer accounting," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 31(3), pages 157-208, September.
    4. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
    5. Gary L. Lilien & John H. Roberts & Venkatesh Shankar, 2013. "Effective Marketing Science Applications: Insights from the ISMS-MSI Practice Prize Finalist Papers and Projects," Marketing Science, INFORMS, vol. 32(2), pages 229-245, March.
    6. Hans Buhl & Robert Klein & Johannes Kolb & Andrea Landherr, 2011. "CR 2 M—an approach for capacity control considering long-term effects on the value of a customer for the company," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 22(2), pages 187-204, December.
    7. Klein, Robert & Kolb, Johannes, 2015. "Maximizing customer equity subject to capacity constraints," Omega, Elsevier, vol. 55(C), pages 111-125.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verhoef, Peter C. & Venkatesan, Rajkumar & McAlister, Leigh & Malthouse, Edward C. & Krafft, Manfred & Ganesan, Shankar, 2010. "CRM in Data-Rich Multichannel Retailing Environments: A Review and Future Research Directions," Journal of Interactive Marketing, Elsevier, vol. 24(2), pages 121-137.
    2. Blattberg, Robert C. & Malthouse, Edward C. & Neslin, Scott A., 2009. "Customer Lifetime Value: Empirical Generalizations and Some Conceptual Questions," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 157-168.
    3. Durango-Cohen, Elizabeth J., 2013. "Modeling contribution behavior in fundraising: Segmentation analysis for a public broadcasting station," European Journal of Operational Research, Elsevier, vol. 227(3), pages 538-551.
    4. George, Morris & Kumar, V. & Grewal, Dhruv, 2013. "Maximizing Profits for a Multi-Category Catalog Retailer," Journal of Retailing, Elsevier, vol. 89(4), pages 374-396.
    5. Mercedes Esteban-Bravo & Jose M. Vidal-Sanz & Gökhan Yildirim, 2014. "Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition," Marketing Science, INFORMS, vol. 33(5), pages 621-640, September.
    6. Andrés Musalem & Yogesh V. Joshi, 2009. "—How Much Should You Invest in Each Customer Relationship? A Competitive Strategic Approach," Marketing Science, INFORMS, vol. 28(3), pages 555-565, 05-06.
    7. Sunil Gupta & Valarie Zeithaml, 2006. "Customer Metrics and Their Impact on Financial Performance," Marketing Science, INFORMS, vol. 25(6), pages 718-739, 11-12.
    8. Durango-Cohen, Elizabeth J. & Torres, Ramón L. & Durango-Cohen, Pablo L., 2013. "Donor Segmentation: When Summary Statistics Don't Tell the Whole Story," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 172-184.
    9. Romana Khan & Michael Lewis & Vishal Singh, 2009. "Dynamic Customer Management and the Value of One-to-One Marketing," Marketing Science, INFORMS, vol. 28(6), pages 1063-1079, 11-12.
    10. Duncan I. Simester & Peng Sun & John N. Tsitsiklis, 2006. "Dynamic Catalog Mailing Policies," Management Science, INFORMS, vol. 52(5), pages 683-696, May.
    11. Roland T. Rust & Tuck Siong Chung, 2006. "Marketing Models of Service and Relationships," Marketing Science, INFORMS, vol. 25(6), pages 560-580, 11-12.
    12. Sarkar, Mainak & De Bruyn, Arnaud, 2021. "LSTM Response Models for Direct Marketing Analytics: Replacing Feature Engineering with Deep Learning," Journal of Interactive Marketing, Elsevier, vol. 53(C), pages 80-95.
    13. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    14. Cui, Geng & Wong, Man Leung & Wan, Xiang, 2015. "Targeting High Value Customers While Under Resource Constraint: Partial Order Constrained Optimization with Genetic Algorithm," Journal of Interactive Marketing, Elsevier, vol. 29(C), pages 27-37.
    15. Shie Mannor & Duncan Simester & Peng Sun & John N. Tsitsiklis, 2007. "Bias and Variance Approximation in Value Function Estimates," Management Science, INFORMS, vol. 53(2), pages 308-322, February.
    16. Dimitris Bertsimas & Adam J. Mersereau, 2007. "A Learning Approach for Interactive Marketing to a Customer Segment," Operations Research, INFORMS, vol. 55(6), pages 1120-1135, December.
    17. Klein, Robert & Kolb, Johannes, 2015. "Maximizing customer equity subject to capacity constraints," Omega, Elsevier, vol. 55(C), pages 111-125.
    18. Philipp Afèche & Mojtaba Araghi & Opher Baron, 2017. "Customer Acquisition, Retention, and Service Access Quality: Optimal Advertising, Capacity Level, and Capacity Allocation," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 674-691, October.
    19. Hans Buhl & Martin Gneiser & Julia Heidemann, 2009. "Ein modelltheoretischer Ansatz zur Planung von Investitionen in Kundenbeziehungen," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 20(2), pages 175-195, October.
    20. Wagner Kamakura & Carl Mela & Asim Ansari & Anand Bodapati & Pete Fader & Raghuram Iyengar & Prasad Naik & Scott Neslin & Baohong Sun & Peter Verhoef & Michel Wedel & Ron Wilcox, 2005. "Choice Models and Customer Relationship Management," Marketing Letters, Springer, vol. 16(3), pages 279-291, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:26:y:2007:i:4:p:553-565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.