IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v66y2016i4d10.1007_s10898-016-0423-7.html
   My bibliography  Save this article

Solving infinite horizon optimization problems through analysis of a one-dimensional global optimization problem

Author

Listed:
  • Seksan Kiatsupaibul

    (Chulalongkorn University)

  • Robert L. Smith

    (The University of Michigan)

  • Zelda B. Zabinsky

    (University of Washington)

Abstract

Infinite horizon optimization (IHO) problems present a number of challenges for their solution, most notably, the inclusion of an infinite data set. This hurdle is often circumvented by approximating its solution by solving increasingly longer finite horizon truncations of the original infinite horizon problem. In this paper, we adopt a novel transformation that reduces the infinite dimensional IHO problem into an equivalent one dimensional optimization problem, i.e., minimizing a Hölder continuous objective function with known parameters over a closed and bounded interval of the real line. We exploit the characteristics of the transformed problem in one dimension and introduce an algorithm with a graphical implementation for solving the underlying infinite dimensional optimization problem.

Suggested Citation

  • Seksan Kiatsupaibul & Robert L. Smith & Zelda B. Zabinsky, 2016. "Solving infinite horizon optimization problems through analysis of a one-dimensional global optimization problem," Journal of Global Optimization, Springer, vol. 66(4), pages 711-727, December.
  • Handle: RePEc:spr:jglopt:v:66:y:2016:i:4:d:10.1007_s10898-016-0423-7
    DOI: 10.1007/s10898-016-0423-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0423-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0423-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeffrey M. Alden & Robert L. Smith, 1992. "Rolling Horizon Procedures in Nonhomogeneous Markov Decision Processes," Operations Research, INFORMS, vol. 40(3-supplem), pages 183-194, June.
    2. James C. Bean & Robert L. Smith, 1984. "Conditions for the Existence of Planning Horizons," Mathematics of Operations Research, INFORMS, vol. 9(3), pages 391-401, August.
    3. Irwin E. Schochetman & Robert L. Smith, 1989. "Infinite Horizon Optimization," Mathematics of Operations Research, INFORMS, vol. 14(3), pages 559-574, August.
    4. Huang, Kai & Ahmed, Shabbir, 2010. "A stochastic programming approach for planning horizons of infinite horizon capacity planning problems," European Journal of Operational Research, Elsevier, vol. 200(1), pages 74-84, January.
    5. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    2. Archis Ghate & Robert L. Smith, 2009. "Optimal Backlogging Over an Infinite Horizon Under Time-Varying Convex Production and Inventory Costs," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 362-368, June.
    3. Robert L. Smith & Rachel Q. Zhang, 1998. "Infinite Horizon Production Planning in Time-Varying Systems with Convex Production and Inventory Costs," Management Science, INFORMS, vol. 44(9), pages 1313-1320, September.
    4. Torpong Cheevaprawatdomrong & Irwin E. Schochetman & Robert L. Smith & Alfredo Garcia, 2007. "Solution and Forecast Horizons for Infinite-Horizon Nonhomogeneous Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 51-72, February.
    5. Zhaotong Lian & Liming Liu & Stuart X. Zhu, 2010. "Rolling‐horizon replenishment: Policies and performance analysis," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 489-502, September.
    6. Huang, Kai & Ahmed, Shabbir, 2010. "A stochastic programming approach for planning horizons of infinite horizon capacity planning problems," European Journal of Operational Research, Elsevier, vol. 200(1), pages 74-84, January.
    7. Iida, Tetsuo, 1999. "The infinite horizon non-stationary stochastic inventory problem: Near myopic policies and weak ergodicity," European Journal of Operational Research, Elsevier, vol. 116(2), pages 405-422, July.
    8. Torpong Cheevaprawatdomrong & Robert L. Smith, 2004. "Infinite Horizon Production Scheduling in Time-Varying Systems Under Stochastic Demand," Operations Research, INFORMS, vol. 52(1), pages 105-115, February.
    9. Archis Ghate & Robert L. Smith, 2013. "A Linear Programming Approach to Nonstationary Infinite-Horizon Markov Decision Processes," Operations Research, INFORMS, vol. 61(2), pages 413-425, April.
    10. Iida, Tetsuo, 2001. "The infinite horizon non-stationary stochastic multi-echelon inventory problem and near-myopic policies," European Journal of Operational Research, Elsevier, vol. 134(3), pages 525-539, November.
    11. Thomas W.M. Vossen & Fan You & Dan Zhang, 2022. "Finite‐horizon approximate linear programs for capacity allocation over a rolling horizon," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2127-2142, May.
    12. Glomb, Lukas & Liers, Frauke & Rösel, Florian, 2022. "A rolling-horizon approach for multi-period optimization," European Journal of Operational Research, Elsevier, vol. 300(1), pages 189-206.
    13. Charles, Mehdi & Dauzère-Pérès, Stéphane & Kedad-Sidhoum, Safia & Mazhoud, Issam, 2022. "Motivations and analysis of the capacitated lot-sizing problem with setup times and minimum and maximum ending inventories," European Journal of Operational Research, Elsevier, vol. 302(1), pages 203-220.
    14. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    15. Eugenio Vecchia & Silvia Marco & Alain Jean-Marie, 2012. "Illustrated review of convergence conditions of the value iteration algorithm and the rolling horizon procedure for average-cost MDPs," Annals of Operations Research, Springer, vol. 199(1), pages 193-214, October.
    16. Lin Wang & Zhiqiang Lu & Yifei Ren, 2019. "A rolling horizon approach for production planning and condition-based maintenance under uncertain demand," Journal of Risk and Reliability, , vol. 233(6), pages 1014-1028, December.
    17. Sinitskaya, Ekaterina & Tesfatsion, Leigh, 2015. "Macroeconomies as constructively rational games," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 152-182.
    18. G. Rius-Sorolla & J. Maheut & S. Estellés-Miguel & J. P. García-Sabater, 2021. "Operations planning test bed under rolling horizons, multiproduct, multiechelon, multiprocess for capacitated production planning modelling with strokes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1289-1315, December.
    19. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Discrete‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 131-153, January.
    20. Milind Dawande & Srinagesh Gavirneni & Yinping Mu & Suresh Sethi & Chelliah Sriskandarajah, 2010. "On the Interaction Between Demand Substitution and Production Changeovers," Manufacturing & Service Operations Management, INFORMS, vol. 12(4), pages 682-691, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:66:y:2016:i:4:d:10.1007_s10898-016-0423-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.