IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v44y1998i10p1426-1441.html
   My bibliography  Save this article

Likelihood Ratio Derivative Estimation for Finite-Time Performance Measures in Generalized Semi-Markov Processes

Author

Listed:
  • Marvin K. Nakayama

    (Department of Computer and Information Science, New Jersey Institute of Technology, Newark, New Jersey 07102)

  • Perwez Shahabuddin

    (Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027)

Abstract

This paper investigates the likelihood ratio method for estimating derivatives of finite-time performance measures in generalized semi-Markov processes (GSMPs). We develop readily verifiable conditions for the applicability of this method. Our conditions mainly place restrictions on the basic building blocks (i.e., the transition probabilities, the distribution and density functions of the event lifetimes, and the initial distribution) of the GSMP, which is in contrast to the structural conditions needed for infinitesimal perturbation analysis. We explicitly show that our conditions hold in many practical settings, and in particular, for large classes of queueing and reliability models. One intermediate result we obtain in this study, which is of independent value, is to formally show that the random variable representing the number of occurring events in a GSMP in a finite time horizon, has finite exponential moments in a neighborhood of zero.

Suggested Citation

  • Marvin K. Nakayama & Perwez Shahabuddin, 1998. "Likelihood Ratio Derivative Estimation for Finite-Time Performance Measures in Generalized Semi-Markov Processes," Management Science, INFORMS, vol. 44(10), pages 1426-1441, October.
  • Handle: RePEc:inm:ormnsc:v:44:y:1998:i:10:p:1426-1441
    DOI: 10.1287/mnsc.44.10.1426
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.44.10.1426
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.44.10.1426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ward Whitt, 1980. "Continuity of Generalized Semi-Markov Processes," Mathematics of Operations Research, INFORMS, vol. 5(4), pages 494-501, November.
    2. Marvin K. Nakayama & Ambuj Goyal & Peter W. Glynn, 1994. "Likelihood Ratio Sensitivity Analysis for Markovian Models of Highly Dependable Systems," Operations Research, INFORMS, vol. 42(1), pages 137-157, February.
    3. Reuven Y. Rubinstein, 1989. "Sensitivity Analysis and Performance Extrapolation for Computer Simulation Models," Operations Research, INFORMS, vol. 37(1), pages 72-81, February.
    4. Rubinstein, Reuven Y., 1986. "The score function approach for sensitivity analysis of computer simulation models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 28(5), pages 351-379.
    5. Marvin K. Nakayama, 1995. "Asymptotics of Likelihood Ratio Derivative Estimators in Simulations of Highly Reliable Markovian Systems," Management Science, INFORMS, vol. 41(3), pages 524-554, March.
    6. Peter W. Glynn & Donald L. Iglehart, 1989. "Importance Sampling for Stochastic Simulations," Management Science, INFORMS, vol. 35(11), pages 1367-1392, November.
    7. Paul Glasserman & David D. Yao, 1992. "Some Guidelines and Guarantees for Common Random Numbers," Management Science, INFORMS, vol. 38(6), pages 884-908, June.
    8. Philip Heidelberger & Xi-Ren Cao & Michael A. Zazanis & Rajan Suri, 1988. "Convergence Properties of Infinitesimal Perturbation Analysis Estimates," Management Science, INFORMS, vol. 34(11), pages 1281-1302, November.
    9. Martin I. Reiman & Alan Weiss, 1989. "Sensitivity Analysis for Simulations via Likelihood Ratios," Operations Research, INFORMS, vol. 37(5), pages 830-844, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hachicha, Wafik & Ammeri, Ahmed & Masmoudi, Faouzi & Chachoub, Habib, 2010. "A comprehensive literature classification of simulation optimisation methods," MPRA Paper 27652, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jinghui & Mosleh, Ali & Kang, Rui, 2011. "Likelihood ratio gradient estimation for dynamic reliability applications," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1667-1679.
    2. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    3. Gilles Pages & Olivier Pironneau & Guillaume Sall, 2015. "Vibrato and Automatic Differentiation for High Order Derivatives and Sensitivities of Financial Options," Working Papers hal-01234637, HAL.
    4. Soumyadip Ghosh & Henry Lam, 2019. "Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees," Operations Research, INFORMS, vol. 67(1), pages 232-249, January.
    5. Marvin K. Nakayama, 1998. "On Derivative Estimation of the Mean Time to Failure in Simulations of Highly Reliable Markovian Systems," Operations Research, INFORMS, vol. 46(2), pages 285-290, April.
    6. Laub, Patrick J. & Salomone, Robert & Botev, Zdravko I., 2019. "Monte Carlo estimation of the density of the sum of dependent random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 23-31.
    7. Yongqiang Wang & Michael C. Fu & Steven I. Marcus, 2012. "A New Stochastic Derivative Estimator for Discontinuous Payoff Functions with Application to Financial Derivatives," Operations Research, INFORMS, vol. 60(2), pages 447-460, April.
    8. Barry L. Nelson, 2004. "50th Anniversary Article: Stochastic Simulation Research in Management Science," Management Science, INFORMS, vol. 50(7), pages 855-868, July.
    9. Jingxu Xu & Zeyu Zheng, 2023. "Gradient-Based Simulation Optimization Algorithms via Multi-Resolution System Approximations," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 633-651, May.
    10. Gilles Pag`es & Olivier Pironneau & Guillaume Sall, 2016. "Vibrato and automatic differentiation for high order derivatives and sensitivities of financial options," Papers 1606.06143, arXiv.org.
    11. Sridhar Bashyam & Michael C. Fu, 1994. "Application of perturbation analysis to a class of periodic review (s, S) inventory systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(1), pages 47-80, February.
    12. Schweinberger, Michael & Snijders, Tom A.B., 2007. "Markov models for digraph panel data: Monte Carlo-based derivative estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4465-4483, May.
    13. Yijie Peng & Li Xiao & Bernd Heidergott & L. Jeff Hong & Henry Lam, 2022. "A New Likelihood Ratio Method for Training Artificial Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 638-655, January.
    14. Philippe Jehiel & Jakub Steiner, 2020. "Selective Sampling with Information-Storage Constraints [On interim rationality, belief formation and learning in decision problems with bounded memory]," The Economic Journal, Royal Economic Society, vol. 130(630), pages 1753-1781.
    15. Prusty, B Rajanarayan & Jena, Debashisha, 2017. "A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1286-1302.
    16. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 55-65.
    17. Michael C. Fu & Jian-Qiang Hu & Chun-Hung Chen & Xiaoping Xiong, 2007. "Simulation Allocation for Determining the Best Design in the Presence of Correlated Sampling," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 101-111, February.
    18. Calvin, James M. & Nakayama, Marvin K., 2004. "Permuted derivative and importance-sampling estimators for regenerative simulations," European Journal of Operational Research, Elsevier, vol. 156(2), pages 390-414, July.
    19. Shane G. Henderson & Peter W. Glynn, 1999. "Derandomizing Variance Estimators," Operations Research, INFORMS, vol. 47(6), pages 907-916, December.
    20. Sandeep Juneja & Perwez Shahabuddin, 2001. "Fast Simulation of Markov Chains with Small Transition Probabilities," Management Science, INFORMS, vol. 47(4), pages 547-562, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:44:y:1998:i:10:p:1426-1441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.