IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v46y1998i2p285-290.html
   My bibliography  Save this article

On Derivative Estimation of the Mean Time to Failure in Simulations of Highly Reliable Markovian Systems

Author

Listed:
  • Marvin K. Nakayama

    (New Jersey Institute of Technology, Newark, New Jersey)

Abstract

The mean time to failure (MTTF) of a Markovian system can be expressed as a ratio of two expectations. For highly reliable Markovian systems, the resulting ratio formula consists of one expectation that cannot be estimated with bounded relative error when using standard simulation, while the other, which we call a nonrare expectation, can be estimated with bounded relative error. We show that some derivatives of the nonrare expectation cannot be estimated with bounded relative error when using standard simulation, which in turn may lead to an estimator of the derivative of the MTTF that has unbounded relative error. However, if particular importance-sampling methods (e.g., balanced failure biasing) are used, then the estimator of the derivative of the nonrare expectation will have bounded relative error, which (under certain conditions) will yield an estimator of the derivative of the MTTF with bounded relative error.

Suggested Citation

  • Marvin K. Nakayama, 1998. "On Derivative Estimation of the Mean Time to Failure in Simulations of Highly Reliable Markovian Systems," Operations Research, INFORMS, vol. 46(2), pages 285-290, April.
  • Handle: RePEc:inm:oropre:v:46:y:1998:i:2:p:285-290
    DOI: 10.1287/opre.46.2.285
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.46.2.285
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.46.2.285?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marvin K. Nakayama, 1995. "Asymptotics of Likelihood Ratio Derivative Estimators in Simulations of Highly Reliable Markovian Systems," Management Science, INFORMS, vol. 41(3), pages 524-554, March.
    2. Marvin K. Nakayama & Ambuj Goyal & Peter W. Glynn, 1994. "Likelihood Ratio Sensitivity Analysis for Markovian Models of Highly Dependable Systems," Operations Research, INFORMS, vol. 42(1), pages 137-157, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marvin K. Nakayama & Perwez Shahabuddin, 1998. "Likelihood Ratio Derivative Estimation for Finite-Time Performance Measures in Generalized Semi-Markov Processes," Management Science, INFORMS, vol. 44(10), pages 1426-1441, October.
    2. Georgios Arampatzis & Markos A Katsoulakis & Yannis Pantazis, 2015. "Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-24, July.
    3. Hachicha, Wafik & Ammeri, Ahmed & Masmoudi, Faouzi & Chachoub, Habib, 2010. "A comprehensive literature classification of simulation optimisation methods," MPRA Paper 27652, University Library of Munich, Germany.
    4. Li, Jinghui & Mosleh, Ali & Kang, Rui, 2011. "Likelihood ratio gradient estimation for dynamic reliability applications," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1667-1679.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:46:y:1998:i:2:p:285-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.