IDEAS home Printed from https://ideas.repec.org/a/inm/orited/v22y2022i3p147-159.html
   My bibliography  Save this article

Monte Carlo Enhancement via Simulation Decomposition: A “Must-Have” Inclusion for Many Disciplines

Author

Listed:
  • Mariia Kozlova

    (School of Business and Management, LUT University, 53850 Lappeenranta, Finland)

  • Julian Scott Yeomans

    (Operations Management and Information Systems Area, Schulich School of Business, York University, Toronto, Ontario M3J 1P3, Canada)

Abstract

Monte Carlo (MC) simulation is widely used in many different disciplines in order to analyze problems that involve uncertainty. Simulation decomposition has recently provided a simple, but powerful, advancement to the standard Monte Carlo approach. Its value for better informing decision making has been previously shown in the investment-analysis field. In this paper, we demonstrate that simulation decomposition can enhance problem analysis in a wide array of domains by applying it to three very different disciplines: geology, business, and environmental science. Further extensions to such disciplines as engineering, natural sciences, and social sciences are discussed. We propose that by incorporating simulation decomposition into pedagogical practices, we expect students to significantly advance their problem-understanding and problem-solving skills.

Suggested Citation

  • Mariia Kozlova & Julian Scott Yeomans, 2022. "Monte Carlo Enhancement via Simulation Decomposition: A “Must-Have” Inclusion for Many Disciplines," INFORMS Transactions on Education, INFORMS, vol. 22(3), pages 147-159, May.
  • Handle: RePEc:inm:orited:v:22:y:2022:i:3:p:147-159
    DOI: 10.1287/ited.2019.0240
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ited.2019.0240
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ited.2019.0240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Kozlova & M. Collan & P. Luukka, 2016. "Simulation Decomposition: New Approach For Better Simulation Analysis Of Multi-Variable Investment Projects," Fuzzy Economic Review, International Association for Fuzzy-set Management and Economy (SIGEF), vol. 21(2), pages 3-18, November.
    2. M. Kozlova & M. Collan & P. Luukka, 2016. "Simulation Decomposition: New Approach For Better Simulation Analysis Of Multi-Variable Investment Projects," Fuzzy Economic Review, International Association for Fuzzy-set Management and Economy (SIGEF), vol. 21(2), pages 3-18, November.
    3. Enrico Zio, 2013. "System Reliability and Risk Analysis," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 7-17, Springer.
    4. Ivan Deviatkin & Musharof Khan & Elizabeth Ernst & Mika Horttanainen, 2019. "Wooden and Plastic Pallets: A Review of Life Cycle Assessment (LCA) Studies," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    5. Enrico Zio, 2013. "Monte Carlo Simulation: The Method," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 19-58, Springer.
    6. Enrico Zio, 2013. "The Monte Carlo Simulation Method for System Reliability and Risk Analysis," Springer Series in Reliability Engineering, Springer, edition 127, number 978-1-4471-4588-2, August.
    7. Enrico Zio, 2013. "System Reliability and Risk Analysis by Monte Carlo Simulation," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 59-81, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.
    2. Su, Huai & Zhang, Jinjun & Zio, Enrico & Yang, Nan & Li, Xueyi & Zhang, Zongjie, 2018. "An integrated systemic method for supply reliability assessment of natural gas pipeline networks," Applied Energy, Elsevier, vol. 209(C), pages 489-501.
    3. Naseri, Masoud & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2016. "Availability assessment of oil and gas processing plants operating under dynamic Arctic weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 66-82.
    4. Guowang Meng & Hongle Li & Bo Wu & Guangyang Liu & Huazheng Ye & Yiming Zuo, 2023. "Prediction of the Tunnel Collapse Probability Using SVR-Based Monte Carlo Simulation: A Case Study," Sustainability, MDPI, vol. 15(9), pages 1-21, April.
    5. Michael Saidani & Alissa Kendall & Bernard Yannou & Yann Leroy & François Cluzel, 2019. "Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators," Post-Print hal-02094798, HAL.
    6. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    7. Charles C. Thiel & Theodore C. Zsutty & Yajie J. Lee, 2021. "Reliability of Seismic Performance Assessments for Individual Buildings and Portfolios," Risks, MDPI, vol. 9(7), pages 1-46, July.
    8. Michele Compare & Francesco Di Maio & Enrico Zio & Fausto Carlevaro & Sara Mattafirri, 2016. "Improving scheduled maintenance by missing data reconstruction: A double-loop Monte Carlo approach," Journal of Risk and Reliability, , vol. 230(5), pages 502-511, October.
    9. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    10. Nicola Pedroni & Enrico Zio & Alberto Pasanisi & Mathieu Couplet, 2017. "A critical discussion and practical recommendations on some issues relevant to the non-probabilistic treatment of uncertainty in engineering risk assessment," Post-Print hal-01652230, HAL.
    11. Zhou, Xingyuan & van Gelder, P.H.A.J.M. & Liang, Yongtu & Zhang, Haoran, 2020. "An integrated methodology for the supply reliability analysis of multi-product pipeline systems under pumps failure," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    13. Michele Compare & Luca Bellani & Enrico Zio, 2017. "Availability Model of a PHM-Equipped Component," Post-Print hal-01652232, HAL.
    14. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Michel Batteux & Tatiana Prosvirnova & Antoine Rauzy, 2017. "AltaRica 3.0 assertions: The whys and wherefores," Journal of Risk and Reliability, , vol. 231(6), pages 691-700, December.
    16. Di Maio, Francesco & Pettorossi, Chiara & Zio, Enrico, 2023. "Entropy-driven Monte Carlo simulation method for approximating the survival signature of complex infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Mohammad Nadjafi & Mohammad Ali Farsi & Hossein Jabbari, 2017. "Reliability analysis of multi-state emergency detection system using simulation approach based on fuzzy failure rate," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 532-541, September.
    18. Dao, Cuong D. & Zuo, Ming J., 2017. "Optimal selective maintenance for multi-state systems in variable loading conditions," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 171-180.
    19. Chen, Qian & Zuo, Lili & Wu, Changchun & Cao, Yankai & Bu, Yaran & Chen, Feng & Sadiq, Rehan, 2021. "Supply reliability assessment of a gas pipeline network under stochastic demands," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    20. Ke, Jing & Khanna, Nina & Zhou, Nan, 2022. "Indirect estimation of willingness to pay for energy technology adoption," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orited:v:22:y:2022:i:3:p:147-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.