IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v233y2019i2p139-150.html
   My bibliography  Save this article

Combination of line sampling and important sampling for reliability assessment of buried pipelines

Author

Listed:
  • Kong Fah Tee
  • Andrew Utomi Ebenuwa

Abstract

In this article, a novel approach for estimating the time-dependent reliability of a buried pipe under the impact of internal and external stresses by combining line sampling and important sampling is proposed. The stresses are analysed given the severe effect of corrosion on the performance of underground pipeline. The effect of corrosion during the design life of buried pipe decreases the capability of the pipe wall to sustain the stresses that occur internally or externally. Herein, the failure conditions of total axial stress and the ovality–stress due to point load in conjunction with the adverse effect of corrosion are examined using the proposed computational framework. The quantification of pipe failure due to these stresses is usually challenging because of the imprecision in the determination of the structural parameters. Therefore, the approach is used to capture and evaluate the influence of randomness behaviour of the parameters of pipe and soil in estimating the structural reliability. The proposed method can be applied to any structural engineering problems. In this study, a buried pipe under a roadway is examined and the effect of the underground water table on the performance of buried pipe over time is investigated. The outcome shows that a continuous increase in underground water table can aggravate the likelihood of the buried pipeline to fail. A parametric and sensitivity assessment of corrosion parameters shows their significant contribution to the probability of failure.

Suggested Citation

  • Kong Fah Tee & Andrew Utomi Ebenuwa, 2019. "Combination of line sampling and important sampling for reliability assessment of buried pipelines," Journal of Risk and Reliability, , vol. 233(2), pages 139-150, April.
  • Handle: RePEc:sae:risrel:v:233:y:2019:i:2:p:139-150
    DOI: 10.1177/1748006X18764986
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X18764986
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X18764986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Enrico Zio, 2013. "The Monte Carlo Simulation Method for System Reliability and Risk Analysis," Springer Series in Reliability Engineering, Springer, edition 127, number 978-1-4471-4588-2, March.
    2. Enrico Zio, 2013. "System Reliability and Risk Analysis by Monte Carlo Simulation," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 59-81, Springer.
    3. Tee, Kong Fah & Khan, Lutfor Rahman & Li, Hongshuang, 2014. "Application of subset simulation in reliability estimation of underground pipelines," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 125-131.
    4. Enrico Zio, 2013. "Monte Carlo Simulation: The Method," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 19-58, Springer.
    5. Zio, E. & Pedroni, N., 2010. "An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1300-1313.
    6. Enrico Zio, 2013. "System Reliability and Risk Analysis," Springer Series in Reliability Engineering, in: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, edition 127, chapter 0, pages 7-17, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2016. "Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 117-126.
    2. Zhou, Xingyuan & van Gelder, P.H.A.J.M. & Liang, Yongtu & Zhang, Haoran, 2020. "An integrated methodology for the supply reliability analysis of multi-product pipeline systems under pumps failure," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Michele Compare & Francesco Di Maio & Enrico Zio & Fausto Carlevaro & Sara Mattafirri, 2016. "Improving scheduled maintenance by missing data reconstruction: A double-loop Monte Carlo approach," Journal of Risk and Reliability, , vol. 230(5), pages 502-511, October.
    4. Di Maio, Francesco & Pettorossi, Chiara & Zio, Enrico, 2023. "Entropy-driven Monte Carlo simulation method for approximating the survival signature of complex infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Wang, Fan & Li, Heng, 2018. "System reliability under prescribed marginals and correlations: Are we correct about the effect of correlations?," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 94-104.
    6. Tito G. Amaral & Vitor Fernão Pires & Armando Cordeiro & Daniel Foito & João F. Martins & Julia Yamnenko & Tetyana Tereschenko & Liudmyla Laikova & Ihor Fedin, 2023. "Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform," Energies, MDPI, vol. 16(6), pages 1-18, March.
    7. Penttinen, Jussi-Pekka & Niemi, Arto & Gutleber, Johannes & Koskinen, Kari T. & Coatanéa, Eric & Laitinen, Jouko, 2019. "An open modelling approach for availability and reliability of systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 387-399.
    8. Rocco, Claudio M. & Moronta, José & Ramirez-Marquez, José E. & Barker, Kash, 2017. "Effects of multi-state links in network community detection," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 46-56.
    9. Babykina, Génia & Brînzei, Nicolae & Aubry, Jean-François & Deleuze, Gilles, 2016. "Modeling and simulation of a controlled steam generator in the context of dynamic reliability using a Stochastic Hybrid Automaton," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 115-136.
    10. Compare, Michele & Bellani, Luca & Zio, Enrico, 2017. "Reliability model of a component equipped with PHM capabilities," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 4-11.
    11. Gascard, Eric & Simeu-Abazi, Zineb, 2018. "Quantitative Analysis of Dynamic Fault Trees by means of Monte Carlo Simulations: Event-Driven Simulation Approach," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 487-504.
    12. Shiyu Chen & Wei Wang & Enrico Zio, 2021. "A Simulation-Based Multi-Objective Optimization Framework for the Production Planning in Energy Supply Chains," Energies, MDPI, vol. 14(9), pages 1-27, May.
    13. Kim, Hyeonmin & Kim, Jung Taek & Heo, Gyunyoung, 2018. "Failure rate updates using condition-based prognostics in probabilistic safety assessments," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 225-233.
    14. Martin Folch-Calvo & Francisco Brocal-Fernández & Cristina González-Gaya & Miguel A. Sebastián, 2020. "Analysis and Characterization of Risk Methodologies Applied to Industrial Parks," Sustainability, MDPI, vol. 12(18), pages 1-35, September.
    15. Cadini, F. & Gioletta, A., 2016. "A Bayesian Monte Carlo-based algorithm for the estimation of small failure probabilities of systems affected by uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 15-27.
    16. Sergio Copiello, 2020. "Business as Usual with Article Processing Charges in the Transition towards OA Publishing: A Case Study Based on Elsevier," Publications, MDPI, vol. 8(1), pages 1-14, January.
    17. Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.
    18. Su, Huai & Zhang, Jinjun & Zio, Enrico & Yang, Nan & Li, Xueyi & Zhang, Zongjie, 2018. "An integrated systemic method for supply reliability assessment of natural gas pipeline networks," Applied Energy, Elsevier, vol. 209(C), pages 489-501.
    19. Naseri, Masoud & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2016. "Availability assessment of oil and gas processing plants operating under dynamic Arctic weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 66-82.
    20. Michel Batteux & Tatiana Prosvirnova & Antoine Rauzy, 2017. "AltaRica 3.0 assertions: The whys and wherefores," Journal of Risk and Reliability, , vol. 231(6), pages 691-700, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:233:y:2019:i:2:p:139-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.