IDEAS home Printed from https://ideas.repec.org/a/inm/orisre/v16y2005i2p169-185.html
   My bibliography  Save this article

Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions

Author

Listed:
  • Gediminas Adomavicius

    (Department of Information and Decision Sciences, Carlson School of Management, University of Minnesota, 321 19th Avenue South, Minneapolis, Minnesota 55455)

  • Alok Gupta

    (Department of Information and Decision Sciences, Carlson School of Management, University of Minnesota, 321 19th Avenue South, Minneapolis, Minnesota 55455)

Abstract

Many auctions involve selling several distinct items simultaneously, where bidders can bid on the whole or any part of the lot. Such auctions are referred to as combinatorial auctions. Examples of such auctions include truck delivery routes, industrial procurement, and FCC spectrum. Determining winners in such auctions is an NP-hard problem, and significant research is being conducted in this area. However, multiple-round (iterative) combinatorial auctions present significant challenges in bid formulations as well. Because the combinatorial dynamics in iterative auctions can make a given bid part of a winning and nonwinning set of bids without any changes in the bid, bidders are usually not able to evaluate whether they should revise their bid at a given point in time or not. Therefore, in this paper we address various computational problems that are relevant from the bidder's perspective. In particular, we introduce two bid evaluation metrics that can be used by bidders to determine whether any given bid can be a part of the winning allocation and explore their theoretical properties. Based on these metrics, we also develop efficient data structures and algorithms that provide comprehensive information about the current state of the auction at any time, which can help bidders in evaluating their bids and bidding strategies. Our approach uses exponential memory storage but provides fast incremental update for new bids, thereby facilitating bidder support for real-time iterative combinatorial auctions.

Suggested Citation

  • Gediminas Adomavicius & Alok Gupta, 2005. "Toward Comprehensive Real-Time Bidder Support in Iterative Combinatorial Auctions," Information Systems Research, INFORMS, vol. 16(2), pages 169-185, June.
  • Handle: RePEc:inm:orisre:v:16:y:2005:i:2:p:169-185
    DOI: 10.1287/isre.1050.0052
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/isre.1050.0052
    Download Restriction: no

    File URL: https://libkey.io/10.1287/isre.1050.0052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank Kelly & Richard Steinberg, 2000. "A Combinatorial Auction with Multiple Winners for Universal Service," Management Science, INFORMS, vol. 46(4), pages 586-596, April.
    2. Ausubel Lawrence M & Milgrom Paul R, 2002. "Ascending Auctions with Package Bidding," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 1(1), pages 1-44, August.
    3. Sven de Vries & Rakesh V. Vohra, 2003. "Combinatorial Auctions: A Survey," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 284-309, August.
    4. Xia, Mu & Stallaert, Jan & Whinston, Andrew B., 2005. "Solving the combinatorial double auction problem," European Journal of Operational Research, Elsevier, vol. 164(1), pages 239-251, July.
    5. Lawrence M. Ausubel & Peter Cramton & Paul Milgrom, 2004. "The Clock-Proxy Auction: A Practical Combinatorial Auction Design," Papers of Peter Cramton 04mit5, University of Maryland, Department of Economics - Peter Cramton, revised 2004.
    6. Brewer, Paul J. & Plott, Charles R., 1996. "A binary conflict ascending price (BICAP) mechanism for the decentralized allocation of the right to use railroad tracks," International Journal of Industrial Organization, Elsevier, vol. 14(6), pages 857-886, October.
    7. Aleksandar Pekev{c} & Michael H. Rothkopf, 2003. "Combinatorial Auction Design," Management Science, INFORMS, vol. 49(11), pages 1485-1503, November.
    8. Michael H. Rothkopf & Aleksandar Pekev{c} & Ronald M. Harstad, 1998. "Computationally Manageable Combinational Auctions," Management Science, INFORMS, vol. 44(8), pages 1131-1147, August.
    9. Jeffrey S. Banks & John O. Ledyard & David P. Porter, 1989. "Allocating Uncertain and Unresponsive Resources: An Experimental Approach," RAND Journal of Economics, The RAND Corporation, vol. 20(1), pages 1-25, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pallab Sanyal, 2016. "Characteristics and Economic Consequences of Jump Bids in Combinatorial Auctions," Information Systems Research, INFORMS, vol. 27(2), pages 347-364, June.
    2. Zhiling Guo & Gary J. Koehler & Andrew B. Whinston, 2012. "A Computational Analysis of Bundle Trading Markets Design for Distributed Resource Allocation," Information Systems Research, INFORMS, vol. 23(3-part-1), pages 823-843, September.
    3. Abhishek Ray & Mario Ventresca & Karthik Kannan, 2021. "A Graph-Based Ant Algorithm for the Winner Determination Problem in Combinatorial Auctions," Information Systems Research, INFORMS, vol. 32(4), pages 1099-1114, December.
    4. Vangerven, Bart & Goossens, Dries R. & Spieksma, Frits C.R., 2017. "Winner determination in geometrical combinatorial auctions," European Journal of Operational Research, Elsevier, vol. 258(1), pages 254-263.
    5. Soumyakanti Chakraborty & Anup K. Sen & Amitava Bagchi, 2015. "Addressing the valuation problem in multi-round combinatorial auctions," Information Systems Frontiers, Springer, vol. 17(5), pages 1145-1160, October.
    6. De Liu & Adib Bagh, 2020. "Preserving Bidder Privacy in Assignment Auctions: Design and Measurement," Management Science, INFORMS, vol. 66(7), pages 3162-3182, July.
    7. Soumyakanti Chakraborty & Anup K. Sen & Amitava Bagchi, 2015. "Combinatorial Auctions for Player Selection in the Indian Premier League (IPL)," Journal of Sports Economics, , vol. 16(1), pages 86-107, January.
    8. Bart Vangerven & Dries R. Goossens & Frits C. R. Spieksma, 2021. "Using Feedback to Mitigate Coordination and Threshold Problems in Iterative Combinatorial Auctions," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(2), pages 113-127, April.
    9. Ioannis Petrakis & Georg Ziegler & Martin Bichler, 2013. "Ascending Combinatorial Auctions with Allocation Constraints: On Game Theoretical and Computational Properties of Generic Pricing Rules," Information Systems Research, INFORMS, vol. 24(3), pages 768-786, September.
    10. Andor Goetzendorff & Martin Bichler & Pasha Shabalin & Robert W. Day, 2015. "Compact Bid Languages and Core Pricing in Large Multi-item Auctions," Management Science, INFORMS, vol. 61(7), pages 1684-1703, July.
    11. Martin Bichler & Johannes Knörr & Felipe Maldonado, 2023. "Pricing in Nonconvex Markets: How to Price Electricity in the Presence of Demand Response," Information Systems Research, INFORMS, vol. 34(2), pages 652-675, June.
    12. Martin Bichler & Pasha Shabalin & Alexander Pikovsky, 2009. "A Computational Analysis of Linear Price Iterative Combinatorial Auction Formats," Information Systems Research, INFORMS, vol. 20(1), pages 33-59, March.
    13. Martin Bichler & Pasha Shabalin & Georg Ziegler, 2013. "Efficiency with Linear Prices? A Game-Theoretical and Computational Analysis of the Combinatorial Clock Auction," Information Systems Research, INFORMS, vol. 24(2), pages 394-417, June.
    14. Martin Bichler & Alexander Hammerl & Thayer Morrill & Stefan Waldherr, 2021. "How to Assign Scarce Resources Without Money: Designing Information Systems that are Efficient, Truthful, and (Pretty) Fair," Information Systems Research, INFORMS, vol. 32(2), pages 335-355, June.
    15. Onur Şeref & Ravindra K. Ahuja & James B. Orlin, 2009. "Incremental Network Optimization: Theory and Algorithms," Operations Research, INFORMS, vol. 57(3), pages 586-594, June.
    16. Martin Bichler & Zhen Hao & Gediminas Adomavicius, 2017. "Coalition-Based Pricing in Ascending Combinatorial Auctions," Information Systems Research, INFORMS, vol. 28(1), pages 159-179, March.
    17. Gediminas Adomavicius & Shawn P. Curley & Alok Gupta & Pallab Sanyal, 2020. "How Decision Complexity Affects Outcomes in Combinatorial Auctions," Production and Operations Management, Production and Operations Management Society, vol. 29(11), pages 2579-2600, November.
    18. Martin Bichler & Alok Gupta & Wolfgang Ketter, 2010. "Research Commentary ---Designing Smart Markets," Information Systems Research, INFORMS, vol. 21(4), pages 688-699, December.
    19. Martin Bichler & Vladimir Fux & Jacob Goeree, 2018. "A Matter of Equality: Linear Pricing in Combinatorial Exchanges," Information Systems Research, INFORMS, vol. 29(4), pages 1024-1043, December.
    20. Gediminas Adomavicius & Shawn P. Curley & Alok Gupta & Pallab Sanyal, 2012. "Effect of Information Feedback on Bidder Behavior in Continuous Combinatorial Auctions," Management Science, INFORMS, vol. 58(4), pages 811-830, April.
    21. Tobias Scheffel & Alexander Pikovsky & Martin Bichler & Kemal Guler, 2011. "An Experimental Comparison of Linear and Nonlinear Price Combinatorial Auctions," Information Systems Research, INFORMS, vol. 22(2), pages 346-368, June.
    22. Gediminas Adomavicius & Alok Gupta & Mochen Yang, 2022. "Bidder Support in Multi-item Multi-unit Continuous Combinatorial Auctions: A Unifying Theoretical Framework," Information Systems Research, INFORMS, vol. 33(4), pages 1174-1195, December.
    23. Gediminas Adomavicius & Alok Gupta & Dmitry Zhdanov, 2009. "Designing Intelligent Software Agents for Auctions with Limited Information Feedback," Information Systems Research, INFORMS, vol. 20(4), pages 507-526, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avenali, Alessandro, 2009. "Exploring the VCG mechanism in combinatorial auctions: The threshold revenue and the threshold-price rule," European Journal of Operational Research, Elsevier, vol. 199(1), pages 262-275, November.
    2. Gediminas Adomavicius & Alok Gupta & Mochen Yang, 2022. "Bidder Support in Multi-item Multi-unit Continuous Combinatorial Auctions: A Unifying Theoretical Framework," Information Systems Research, INFORMS, vol. 33(4), pages 1174-1195, December.
    3. Jawad Abrache & Teodor Crainic & Michel Gendreau & Monia Rekik, 2007. "Combinatorial auctions," Annals of Operations Research, Springer, vol. 153(1), pages 131-164, September.
    4. Aleksandar Pekev{c} & Michael H. Rothkopf, 2003. "Combinatorial Auction Design," Management Science, INFORMS, vol. 49(11), pages 1485-1503, November.
    5. Richard Li-Yang Chen & Shervin AhmadBeygi & Amy Cohn & Damian R. Beil & Amitabh Sinha, 2009. "Solving Truckload Procurement Auctions Over an Exponential Number of Bundles," Transportation Science, INFORMS, vol. 43(4), pages 493-510, November.
    6. Park, Sunju & Rothkopf, Michael H., 2005. "Auctions with bidder-determined allowable combinations," European Journal of Operational Research, Elsevier, vol. 161(2), pages 399-415, March.
    7. Pallab Sanyal, 2016. "Characteristics and Economic Consequences of Jump Bids in Combinatorial Auctions," Information Systems Research, INFORMS, vol. 27(2), pages 347-364, June.
    8. G. Anandalingam & Robert W. Day & S. Raghavan, 2005. "The Landscape of Electronic Market Design," Management Science, INFORMS, vol. 51(3), pages 316-327, March.
    9. Robert W. Day & Peter Cramton, 2012. "Quadratic Core-Selecting Payment Rules for Combinatorial Auctions," Operations Research, INFORMS, vol. 60(3), pages 588-603, June.
    10. Nisan, Noam & Segal, Ilya, 2006. "The communication requirements of efficient allocations and supporting prices," Journal of Economic Theory, Elsevier, vol. 129(1), pages 192-224, July.
    11. Tuomas Sandholm & Subhash Suri & Andrew Gilpin & David Levine, 2005. "CABOB: A Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions," Management Science, INFORMS, vol. 51(3), pages 374-390, March.
    12. Gediminas Adomavicius & Shawn P. Curley & Alok Gupta & Pallab Sanyal, 2012. "Effect of Information Feedback on Bidder Behavior in Continuous Combinatorial Auctions," Management Science, INFORMS, vol. 58(4), pages 811-830, April.
    13. Choi, Jin Ho & Chang, Yong Sik & Han, Ingoo, 2009. "The empirical analysis of the N-bilateral optimized combinatorial auction model," Omega, Elsevier, vol. 37(2), pages 482-493, April.
    14. Martin Bichler & Alexander Pikovsky & Thomas Setzer, 2009. "An Analysis of Design Problems in Combinatorial Procurement Auctions," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 1(1), pages 111-117, February.
    15. Mishra, Debasis & Parkes, David C., 2007. "Ascending price Vickrey auctions for general valuations," Journal of Economic Theory, Elsevier, vol. 132(1), pages 335-366, January.
    16. Lamprirni Zarpala & Dimitris Voliotis, 2022. "A core-selecting auction for portfolio's packages," Papers 2206.11516, arXiv.org, revised Feb 2024.
    17. Anthony M. Kwasnica & John O. Ledyard & Dave Porter & Christine DeMartini, 2005. "A New and Improved Design for Multiobject Iterative Auctions," Management Science, INFORMS, vol. 51(3), pages 419-434, March.
    18. Bourbeau, Benoit & Gabriel Crainic, Teodor & Gendreau, Michel & Robert, Jacques, 2005. "Design for optimized multi-lateral multi-commodity markets," European Journal of Operational Research, Elsevier, vol. 163(2), pages 503-529, June.
    19. Lawrence M. Ausubel & Paul Milgrom, 2004. "Ascending Proxy Auctions," Discussion Papers 03-035, Stanford Institute for Economic Policy Research.
    20. Sayee Srinivasan, 2002. "Trading Portfolios Electronically – An Experimental Approach," Netnomics, Springer, vol. 4(1), pages 39-71, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:16:y:2005:i:2:p:169-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.