IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v112y2022ics0305048322000901.html
   My bibliography  Save this article

An optimization approach for multi-echelon supply chain viability with disruption risk minimization

Author

Listed:
  • Liu, Ming
  • Liu, Zhongzheng
  • Chu, Feng
  • Dolgui, Alexandre
  • Chu, Chengbin
  • Zheng, Feifeng

Abstract

The outbreak of extraordinary disruptive events, e.g., the COVID-19 pandemic, has greatly impacted the orderly operation in global supply chains (SCs), and may lead to the SC breakdown. Regulatory actions, such as government interventions during the pandemic, can greatly mitigate the disruption propagation (i.e., the ripple effect) and improve SC viability. However, existing works that focus on the disruption propagation management have not considered the possibility of such interventions. Motivated by the fact, in this study, we investigate a new disruption propagation management problem in a multi-echelon SC with limited intervention budget. The aim is to minimize disruption risk measured by the disrupted probability of target participants in the SC. For the problem, a novel approach, combining the Causal Bayesian Network (CBN), the do-calculus and the mathematical programming, is developed. Specially, two mixed-integer non-linear programming models are constructed to determine appropriate interventions. To enhance the proposed mathematical models, two valid inequalities are proposed. Then, a problem-specific genetic algorithm (GA) is developed for handling large-scale problem instances. Numerical experiments on a case study and randomly generated instances are conducted to evaluate the efficiency of the proposed models, the valid inequalities and the GA. Based on experiment analysis, managerial insights are drawn.

Suggested Citation

  • Liu, Ming & Liu, Zhongzheng & Chu, Feng & Dolgui, Alexandre & Chu, Chengbin & Zheng, Feifeng, 2022. "An optimization approach for multi-echelon supply chain viability with disruption risk minimization," Omega, Elsevier, vol. 112(C).
  • Handle: RePEc:eee:jomega:v:112:y:2022:i:c:s0305048322000901
    DOI: 10.1016/j.omega.2022.102683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048322000901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2022.102683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandre Dolgui & Dmitry Ivanov & Boris Sokolov, 2020. "Reconfigurable supply chain: the X-network," International Journal of Production Research, Taylor & Francis Journals, vol. 58(13), pages 4138-4163, July.
    2. Aseem Kinra & Dmitry Ivanov & Ajay Das & Alexandre Dolgui, 2020. "Ripple effect quantification by supplier risk exposure assessment," International Journal of Production Research, Taylor & Francis Journals, vol. 58(18), pages 5559-5578, September.
    3. Sawik, Tadeusz, 2021. "On the risk-averse selection of resilient multi-tier supply portfolio," Omega, Elsevier, vol. 101(C).
    4. Dmitry Ivanov & Richard Hartl & Alexandre Dolgui & Alexander Pavlov & Boris Sokolov, 2015. "Integration of aggregate distribution and dynamic transportation planning in a supply chain with capacity disruptions and the ripple effect consideration," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 6963-6979, December.
    5. Heckman, James J. & Pinto, Rodrigo, 2022. "Causality and Econometrics," IZA Discussion Papers 15081, Institute of Labor Economics (IZA).
    6. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    7. Arash Azadegan & Kevin Dooley, 2021. "A Typology of Supply Network Resilience Strategies: Complex Collaborations in a Complex World," Journal of Supply Chain Management, Institute for Supply Management, vol. 57(1), pages 17-26, January.
    8. Li, Yuhong & Zobel, Christopher W., 2020. "Exploring supply chain network resilience in the presence of the ripple effect," International Journal of Production Economics, Elsevier, vol. 228(C).
    9. Sawik, Tadeusz, 2010. "Single vs. multiple objective supplier selection in a make to order environment," Omega, Elsevier, vol. 38(3-4), pages 203-212, June.
    10. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    11. Ming Liu & Zhongzheng Liu & Feng Chu & Feifeng Zheng & Chengbin Chu, 2021. "A new robust dynamic Bayesian network approach for disruption risk assessment under the supply chain ripple effect," International Journal of Production Research, Taylor & Francis Journals, vol. 59(1), pages 265-285, January.
    12. Rameshwar Dubey & Angappa Gunasekaran & Stephen J. Childe & Samuel Fosso Wamba & David Roubaud & Cyril Foropon, 2021. "Empirical investigation of data analytics capability and organizational flexibility as complements to supply chain resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 59(1), pages 110-128, January.
    13. Boris Sokolov & Dmitry Ivanov & Alexandre Dolgui & Alexander Pavlov, 2016. "Structural quantification of the ripple effect in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 152-169, January.
    14. Gökhan Özçelik & Ömer Faruk Yılmaz & Fatma Betül Yeni, 2021. "Robust optimisation for ripple effect on reverse supply chain: an industrial case study," International Journal of Production Research, Taylor & Francis Journals, vol. 59(1), pages 245-264, January.
    15. Tadeusz Sawik, 2020. "Selection of Resilient Multi-Tier Supply Portfolio," International Series in Operations Research & Management Science, in: Supply Chain Disruption Management, edition 2, chapter 0, pages 367-400, Springer.
    16. Dmitry Ivanov & Ajay Das, 2020. "Coronavirus (COVID-19/SARS-CoV-2) and supply chain resilience: a research note," International Journal of Integrated Supply Management, Inderscience Enterprises Ltd, vol. 13(1), pages 90-102.
    17. Ivanov, Dmitry & Pavlov, Alexander & Dolgui, Alexandre & Pavlov, Dmitry & Sokolov, Boris, 2016. "Disruption-driven supply chain (re)-planning and performance impact assessment with consideration of pro-active and recovery policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 7-24.
    18. Sawik, Tadeusz, 2014. "Joint supplier selection and scheduling of customer orders under disruption risks: Single vs. dual sourcing," Omega, Elsevier, vol. 43(C), pages 83-95.
    19. Eugene Levner & Alexander Ptuskin, 2018. "Entropy-based model for the ripple effect: managing environmental risks in supply chains," International Journal of Production Research, Taylor & Francis Journals, vol. 56(7), pages 2539-2551, April.
    20. Sawik, Tadeusz, 2022. "Stochastic optimization of supply chain resilience under ripple effect: A COVID-19 pandemic related study," Omega, Elsevier, vol. 109(C).
    21. Yu, Haisheng & Zeng, Amy Z. & Zhao, Lindu, 2009. "Single or dual sourcing: decision-making in the presence of supply chain disruption risks," Omega, Elsevier, vol. 37(4), pages 788-800, August.
    22. Brian Tomlin, 2006. "On the Value of Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks," Management Science, INFORMS, vol. 52(5), pages 639-657, May.
    23. Burgos, Diana & Ivanov, Dmitry, 2021. "Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    24. Qi, Lian & Lee, Kangbok, 2015. "Supply chain risk mitigations with expedited shipping," Omega, Elsevier, vol. 57(PA), pages 98-113.
    25. Ivanov, Dmitry & Pavlov, Alexander & Sokolov, Boris, 2014. "Optimal distribution (re)planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics," European Journal of Operational Research, Elsevier, vol. 237(2), pages 758-770.
    26. Sawik, Tadeusz, 2011. "Selection of supply portfolio under disruption risks," Omega, Elsevier, vol. 39(2), pages 194-208, April.
    27. Sawik, Tadeusz, 2016. "Integrated supply, production and distribution scheduling under disruption risks," Omega, Elsevier, vol. 62(C), pages 131-144.
    28. Chowdhury, Priyabrata & Paul, Sanjoy Kumar & Kaisar, Shahriar & Moktadir, Md. Abdul, 2021. "COVID-19 pandemic related supply chain studies: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    29. Pearl, Judea, 2015. "Trygve Haavelmo And The Emergence Of Causal Calculus," Econometric Theory, Cambridge University Press, vol. 31(1), pages 152-179, February.
    30. Tadeusz Sawik, 2020. "Selection of Resilient Supply Portfolio," International Series in Operations Research & Management Science, in: Supply Chain Disruption Management, edition 2, chapter 0, pages 77-108, Springer.
    31. Lawrence V. Snyder & Zümbül Atan & Peng Peng & Ying Rong & Amanda J. Schmitt & Burcu Sinsoysal, 2016. "OR/MS models for supply chain disruptions: a review," IISE Transactions, Taylor & Francis Journals, vol. 48(2), pages 89-109, February.
    32. Seyed Mohammad Gholami-Zanjani & Mohammad Saeed Jabalameli & Walid Klibi & Mir Saman Pishvaee, 2021. "A robust location-inventory model for food supply chains operating under disruptions with ripple effects," International Journal of Production Research, Taylor & Francis Journals, vol. 59(1), pages 301-324, January.
    33. Hosseini, Seyedmohsen & Morshedlou, Nazanin & Ivanov, Dmitry & Sarder, M.D. & Barker, Kash & Khaled, Abdullah Al, 2019. "Resilient supplier selection and optimal order allocation under disruption risks," International Journal of Production Economics, Elsevier, vol. 213(C), pages 124-137.
    34. Schmitt, Thomas G. & Kumar, Sanjay & Stecke, Kathryn E. & Glover, Fred W. & Ehlen, Mark A., 2017. "Mitigating disruptions in a multi-echelon supply chain using adaptive ordering," Omega, Elsevier, vol. 68(C), pages 185-198.
    35. Dmitry Ivanov & Boris Sokolov & Inna Solovyeva & Alexandre Dolgui & Ferry Jie, 2016. "Dynamic recovery policies for time-critical supply chains under conditions of ripple effect," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7245-7258, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. M. Misbauddin & Mohammad Jahangir Alam & Chitra Lekha Karmaker & Md. Noor Un Nabi & Md. Mahedi Hasan, 2023. "Exploring the Antecedents of Supply Chain Viability in a Pandemic Context: An Empirical Study on the Commercial Flower Supply Chain of an Emerging Economy," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    2. Liu, Ming & Ding, Yueyu & Chu, Feng & Dolgui, Alexandre & Zheng, Feifeng, 2024. "Robust actions for improving supply chain resilience and viability," Omega, Elsevier, vol. 123(C).
    3. Li, Xiang & Wang, Xianzhe & Feng, Ziyan, 2024. "Dynamic repositioning in bike-sharing systems with uncertain demand: An improved rolling horizon framework," Omega, Elsevier, vol. 126(C).
    4. Ming Liu & Hao Tang & Yunfeng Wang & Ruixi Li & Yi Liu & Xin Liu & Yaqian Wang & Yiyang Wu & Yu Wu & Zhijun Sun, 2023. "Enhancing Food Supply Chain in Green Logistics with Multi-Level Processing Strategy under Disruptions," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    5. Chervenkova, Tanya & Ivanov, Dmitry, 2023. "Adaptation strategies for building supply chain viability: A case study analysis of the global automotive industry re-purposing during the COVID-19 pandemic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    6. Haque, Md Tabish & Hamid, Faiz, 2023. "Social distancing and revenue management—A post-pandemic adaptation for railways," Omega, Elsevier, vol. 114(C).
    7. Alam, Md Fahim Bin & Tushar, Saifur Rahman & Ahmed, Tazim & Karmaker, Chitra Lekha & Bari, A.B.M. Mainul & de Jesus Pacheco, Diego Augusto & Nayyar, Anand & Islam, Abu Reza Md Towfiqul, 2024. "Analysis of the enablers to deal with the ripple effect in food grain supply chains under disruption: Implications for food security and sustainability," International Journal of Production Economics, Elsevier, vol. 270(C).
    8. Lin Chen & Ting Dong & Jin Peng & Dan Ralescu, 2023. "Uncertainty Analysis and Optimization Modeling with Application to Supply Chain Management: A Systematic Review," Mathematics, MDPI, vol. 11(11), pages 1-45, May.
    9. He, Junkai & Chu, Feng & Dolgui, Alexandre & Anjos, Miguel F., 2024. "Multi-objective disassembly line balancing and related supply chain management problems under uncertainty: Review and future trends," International Journal of Production Economics, Elsevier, vol. 272(C).
    10. Shaker Ardakani, Elham & Gilani Larimi, Niloofar & Oveysi Nejad, Maryam & Madani Hosseini, Mahsa & Zargoush, Manaf, 2023. "A resilient, robust transformation of healthcare systems to cope with COVID-19 through alternative resources," Omega, Elsevier, vol. 114(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    2. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    3. Sawik, Tadeusz, 2022. "Stochastic optimization of supply chain resilience under ripple effect: A COVID-19 pandemic related study," Omega, Elsevier, vol. 109(C).
    4. Zhimei Lei & Li Cui & Jing Tang & Lujie Chen & Bingbing Liu, 2024. "Supply chain resilience in the context of I4.0 and I5.0 from a multilayer network ripple effect perspective," Annals of Operations Research, Springer, vol. 342(2), pages 1149-1192, November.
    5. Burgos, Diana & Ivanov, Dmitry, 2021. "Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
    7. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    8. Garvey, Myles D. & Carnovale, Steven, 2020. "The rippled newsvendor: A new inventory framework for modeling supply chain risk severity in the presence of risk propagation," International Journal of Production Economics, Elsevier, vol. 228(C).
    9. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry, 2023. "Efficient resilience portfolio design in the supply chain with consideration of preparedness and recovery investments," Omega, Elsevier, vol. 117(C).
    10. Cheramin, Meysam & Saha, Apurba Kumar & Cheng, Jianqiang & Paul, Sanjoy Kumar & Jin, Hongyue, 2021. "Resilient NdFeB magnet recycling under the impacts of COVID-19 pandemic: Stochastic programming and Benders decomposition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    11. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    12. Yılmaz, Ömer Faruk & Yeni, Fatma Betül & Gürsoy Yılmaz, Beren & Özçelik, Gökhan, 2023. "An optimization-based methodology equipped with lean tools to strengthen medical supply chain resilience during a pandemic: A case study from Turkey," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    13. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    14. Ivanov, Dmitry, 2023. "Intelligent digital twin (iDT) for supply chain stress-testing, resilience, and viability," International Journal of Production Economics, Elsevier, vol. 263(C).
    15. Ivanov, Dmitry & Keskin, Burcu B., 2023. "Post-pandemic adaptation and development of supply chain viability theory," Omega, Elsevier, vol. 116(C).
    16. Alam, Md Fahim Bin & Tushar, Saifur Rahman & Ahmed, Tazim & Karmaker, Chitra Lekha & Bari, A.B.M. Mainul & de Jesus Pacheco, Diego Augusto & Nayyar, Anand & Islam, Abu Reza Md Towfiqul, 2024. "Analysis of the enablers to deal with the ripple effect in food grain supply chains under disruption: Implications for food security and sustainability," International Journal of Production Economics, Elsevier, vol. 270(C).
    17. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    18. Ivanov, Dmitry & Dolgui, Alexandre & Sokolov, Boris, 2022. "Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    19. Faiza Hamdi & Ahmed Ghorbel & Faouzi Masmoudi & Lionel Dupont, 2018. "Optimization of a supply portfolio in the context of supply chain risk management: literature review," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 763-788, April.
    20. He, Jian & Alavifard, Farzad & Ivanov, Dmitry & Jahani, Hamed, 2019. "A real-option approach to mitigate disruption risk in the supply chain," Omega, Elsevier, vol. 88(C), pages 133-149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:112:y:2022:i:c:s0305048322000901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.