IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v38y2008i6p421-435.html
   My bibliography  Save this article

Optimally Stationing Army Forces

Author

Listed:
  • Robert F. Dell

    (Operations Research Department, Naval Postgraduate School, Monterey, California 93943)

  • P. Lee Ewing

    (Operations Research Department, Naval Postgraduate School, Monterey, California 93943)

  • William J. Tarantino

    (Operations Research Department, Naval Postgraduate School, Monterey, California 93943)

Abstract

There are over one million United States active-duty Army, Army National Guard, and Army Reserve soldiers. The Army assigns each soldier to a unit at one of over 4,000 worldwide locations; these facilities consist of approximately 15 million acres and 287 million square feet. The Army can change a soldier's unit assignment; it can also move a unit's home installation. This paper presents an integer linear program, Optimally Stationing Army Forces (OSAF), which prescribes optimal Army stationing for a given set of units. OSAF uses the existing starting locations, set of installations, available implementation dollars, and unit requirements for facilities, ranges, and maneuver land. It has provided the Army with stationing analysis for several years. Perhaps most significantly, OSAF helped with the closure and realignment decisions during the 2005 round of Base Realignment and Closure (BRAC). As a result of this BRAC, by 2011 the Army will close 400 installations (13 installations that primarily house active-duty soldiers, 176 Army Reserve centers, and 211 National Guard armories) and realign 56 active units. These BRAC actions will impact 43 states, cost more than $13 billion to implement, and generate an expected 20-year net savings of $7.6 billion.

Suggested Citation

  • Robert F. Dell & P. Lee Ewing & William J. Tarantino, 2008. "Optimally Stationing Army Forces," Interfaces, INFORMS, vol. 38(6), pages 421-435, December.
  • Handle: RePEc:inm:orinte:v:38:y:2008:i:6:p:421-435
    DOI: 10.1287/inte.1080.0401
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.1080.0401
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.1080.0401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    2. Gerald Brown & Joseph Keegan & Brian Vigus & Kevin Wood, 2001. "The Kellogg Company Optimizes Production, Inventory, and Distribution," Interfaces, INFORMS, vol. 31(6), pages 1-15, December.
    3. Paul L. Ewing & William Tarantino & Gregory S. Parnell, 2006. "Use of Decision Analysis in the Army Base Realignment and Closure (BRAC) 2005 Military Value Analysis," Decision Analysis, INFORMS, vol. 3(1), pages 33-49, March.
    4. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    5. Robert F. Dell, 1998. "Optimizing Army Base Realignment and Closure," Interfaces, INFORMS, vol. 28(6), pages 1-18, December.
    6. ReVelle, C.S. & Eiselt, H.A. & Daskin, M.S., 2008. "A bibliography for some fundamental problem categories in discrete location science," European Journal of Operational Research, Elsevier, vol. 184(3), pages 817-848, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kangaspunta, Jussi & Liesiö, Juuso & Salo, Ahti, 2012. "Cost-efficiency analysis of weapon system portfolios," European Journal of Operational Research, Elsevier, vol. 223(1), pages 264-275.
    2. Saber Elsayed & Ruhul Sarker & Daryl Essam, 2013. "Self-adaptive differential evolution incorporating a heuristic mixing of operators," Computational Optimization and Applications, Springer, vol. 54(3), pages 771-790, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodolfo Mendoza-Gómez & Roger Z. Ríos-Mercado & Karla B. Valenzuela-Ocaña, 2019. "An Efficient Decision-Making Approach for the Planning of Diagnostic Services in a Segmented Healthcare System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1631-1665, September.
    2. Haase, Knut & Hoppe, Mirko, 2008. "Standortplanung unter Wettbewerb - Teil 1: Grundlagen," Discussion Papers 2/2008, Technische Universität Dresden, "Friedrich List" Faculty of Transport and Traffic Sciences, Institute of Transport and Economics.
    3. Sanjay Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Modeling and solving a logging camp location problem," Annals of Operations Research, Springer, vol. 232(1), pages 151-177, September.
    4. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    5. Wu, Shanhua & Yang, Zhongzhen, 2018. "Locating manufacturing industries by flow-capturing location model – Case of Chinese steel industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 1-11.
    6. Kress, Dominik & Pesch, Erwin, 2012. "Sequential competitive location on networks," European Journal of Operational Research, Elsevier, vol. 217(3), pages 483-499.
    7. Alan Murray, 2010. "Advances in location modeling: GIS linkages and contributions," Journal of Geographical Systems, Springer, vol. 12(3), pages 335-354, September.
    8. Derya Celik Turkoglu & Mujde Erol Genevois, 2020. "A comparative survey of service facility location problems," Annals of Operations Research, Springer, vol. 292(1), pages 399-468, September.
    9. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    10. Fredriksson, Anders, 2017. "Location-allocation of public services – Citizen access, transparency and measurement. A method and evidence from Brazil and Sweden," Socio-Economic Planning Sciences, Elsevier, vol. 59(C), pages 1-12.
    11. Rentizelas, Athanasios A. & Tatsiopoulos, Ilias P., 2010. "Locating a bioenergy facility using a hybrid optimization method," International Journal of Production Economics, Elsevier, vol. 123(1), pages 196-209, January.
    12. Emde, Simon & Boysen, Nils, 2012. "Optimally locating in-house logistics areas to facilitate JIT-supply of mixed-model assembly lines," International Journal of Production Economics, Elsevier, vol. 135(1), pages 393-402.
    13. Tomaz Dentinho & Vasco Silva, 2012. "Optimization of Location Services in the city of Huambo. Confirmation of the Theory of Central Places," ERSA conference papers ersa12p254, European Regional Science Association.
    14. Yang, Zhongzhen & Yu, Shunan & Notteboom, Theo, 2016. "Airport location in multiple airport regions (MARs): The role of land and airside accessibility," Journal of Transport Geography, Elsevier, vol. 52(C), pages 98-110.
    15. Varsei, Mohsen & Polyakovskiy, Sergey, 2017. "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, Elsevier, vol. 66(PB), pages 236-247.
    16. Schuster Puga, Matías & Tancrez, Jean-Sébastien, 2017. "A heuristic algorithm for solving large location–inventory problems with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 259(2), pages 413-423.
    17. Alessio Ishizaka & Philippe Nemery, 2013. "A Multi-Criteria Group Decision Framework for Partner Grouping When Sharing Facilities," Group Decision and Negotiation, Springer, vol. 22(4), pages 773-799, July.
    18. Pokutta, Sebastian & Schmaltz, Christian, 2011. "Managing liquidity: Optimal degree of centralization," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 627-638, March.
    19. Ishizaka, Alessio & Nemery, Philippe & Lidouh, Karim, 2013. "Location selection for the construction of a casino in the Greater London region: A triple multi-criteria approach," Tourism Management, Elsevier, vol. 34(C), pages 211-220.
    20. Contreras, Ivan & Fernández, Elena & Reinelt, Gerhard, 2012. "Minimizing the maximum travel time in a combined model of facility location and network design," Omega, Elsevier, vol. 40(6), pages 847-860.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:38:y:2008:i:6:p:421-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.