IDEAS home Printed from https://ideas.repec.org/a/spr/eurjco/v8y2020i2d10.1007_s13675-020-00121-0.html
   My bibliography  Save this article

A distributionally robust optimization approach for two-stage facility location problems

Author

Listed:
  • Arash Gourtani

    (University of Southampton)

  • Tri-Dung Nguyen

    (University of Southampton)

  • Huifu Xu

    (The Chinese University of Hong Kong)

Abstract

In this paper, we consider a facility location problem where customer demand constitutes considerable uncertainty, and where complete information on the distribution of the uncertainty is unavailable. We formulate the optimal decision problem as a two-stage stochastic mixed integer programming problem: an optimal selection of facility locations in the first stage and an optimal decision on the operation of each facility in the second stage. A distributionally robust optimization framework is proposed to hedge risks arising from incomplete information on the distribution of the uncertainty. Specifically, by exploiting the moment information, we construct a set of distributions which contains the true distribution and where the optimal decision is based on the worst distribution from the set. We then develop two numerical schemes for solving the distributionally robust facility location problem: a semi-infinite programming approach which exploits moments of certain reference random variables and a semi-definite programming approach which utilizes the mean and correlation of the underlying random variables describing the demand uncertainty. In the semi-infinite programming approach, we apply the well-known linear decision rule approach to the robust dual problem and then approximate the semi-infinite constraints through the conditional value at risk measure. We provide numerical tests to demonstrate the computation and properties of the robust solutions.

Suggested Citation

  • Arash Gourtani & Tri-Dung Nguyen & Huifu Xu, 2020. "A distributionally robust optimization approach for two-stage facility location problems," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 141-172, June.
  • Handle: RePEc:spr:eurjco:v:8:y:2020:i:2:d:10.1007_s13675-020-00121-0
    DOI: 10.1007/s13675-020-00121-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13675-020-00121-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13675-020-00121-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    2. José A. Santiváñez & Héctor J. Carlo, 2018. "Reliable capacitated facility location problem with service levels," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 315-341, December.
    3. Mengshi Lu & Lun Ran & Zuo-Jun Max Shen, 2015. "Reliable Facility Location Design Under Uncertain Correlated Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 445-455, October.
    4. Michael Lim & Mark S. Daskin & Achal Bassamboo & Sunil Chopra, 2010. "A facility reliability problem: Formulation, properties, and algorithm," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(1), pages 58-70, February.
    5. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    6. Anderson, Edward & Xu, Huifu & Zhang, Dali, 2014. "Confidence Levels for CVaR Risk Measures and Minimax Limits," Working Papers 2014_01, University of Sydney Business School, Discipline of Business Analytics.
    7. Igor Averbakh & Oded Berman, 2000. "Minmax Regret Median Location on a Network Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 104-110, May.
    8. Kürşad Derinkuyu & Mustafa Pınar, 2006. "On the S-procedure and Some Variants," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 55-77, August.
    9. Conde, Eduardo, 2007. "Minmax regret location-allocation problem on a network under uncertainty," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1025-1039, June.
    10. Hailin Sun & Huifu Xu & Yong Wang, 2014. "Asymptotic Analysis of Sample Average Approximation for Stochastic Optimization Problems with Joint Chance Constraints via Conditional Value at Risk and Difference of Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 257-284, April.
    11. L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
    12. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    13. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    14. M. C. Campi & S. Garatti, 2011. "A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 257-280, February.
    15. Mark S. Daskin, 2008. "What you should know about location modeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 283-294, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2023. "Distributionally robust chance-constrained programming for multi-period emergency resource allocation and vehicle routing in disaster response operations," Omega, Elsevier, vol. 120(C).
    2. Liu, Zhimin & Wu, Zhong & Ji, Ying & Qu, Shaojian & Raza, Hassan, 2021. "Two-stage distributionally robust mixed-integer optimization model for three-level location–allocation problems under uncertain environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    2. Basciftci, Beste & Ahmed, Shabbir & Shen, Siqian, 2021. "Distributionally robust facility location problem under decision-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 292(2), pages 548-561.
    3. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    4. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2021. "Robust facility location under demand uncertainty and facility disruptions," Omega, Elsevier, vol. 103(C).
    5. Xiaojiao Tong & Hailin Sun & Xiao Luo & Quanguo Zheng, 2018. "Distributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systems," Journal of Global Optimization, Springer, vol. 70(1), pages 131-158, January.
    6. Mozhu Wang & Jianming Yao, 2023. "A reliable location design of unmanned vending machines based on customer satisfaction," Electronic Commerce Research, Springer, vol. 23(1), pages 541-575, March.
    7. Tianqi Liu & Francisco Saldanha-da-Gama & Shuming Wang & Yuchen Mao, 2022. "Robust Stochastic Facility Location: Sensitivity Analysis and Exact Solution," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2776-2803, September.
    8. Algo Carè & Simone Garatti & Marco C. Campi, 2014. "FAST---Fast Algorithm for the Scenario Technique," Operations Research, INFORMS, vol. 62(3), pages 662-671, June.
    9. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    10. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    11. Ting L. Lei & Richard L. Church, 2014. "Vector Assignment Ordered Median Problem," International Regional Science Review, , vol. 37(2), pages 194-224, April.
    12. Cheng, Chun & Yu, Qinxiao & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2024. "Distributionally robust facility location with uncertain facility capacity and customer demand," Omega, Elsevier, vol. 122(C).
    13. Yongzhen Li & Xueping Li & Jia Shu & Miao Song & Kaike Zhang, 2022. "A General Model and Efficient Algorithms for Reliable Facility Location Problem Under Uncertain Disruptions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 407-426, January.
    14. Zhang, Guowei & Jia, Ning & Zhu, Ning & He, Long & Adulyasak, Yossiri, 2023. "Humanitarian transportation network design via two-stage distributionally robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    15. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2023. "Robust maximum capture facility location under random utility maximization models," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1128-1150.
    16. Ming Zhao & Nickolas Freeman & Kai Pan, 2023. "Robust Sourcing Under Multilevel Supply Risks: Analysis of Random Yield and Capacity," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 178-195, January.
    17. Cao, Yunzhi & Zhu, Xiaoyan & Yan, Houmin, 2022. "Data-driven Wasserstein distributionally robust mitigation and recovery against random supply chain disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    18. Shen Peng & Jie Jiang, 2021. "Stochastic mathematical programs with probabilistic complementarity constraints: SAA and distributionally robust approaches," Computational Optimization and Applications, Springer, vol. 80(1), pages 153-184, September.
    19. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    20. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjco:v:8:y:2020:i:2:d:10.1007_s13675-020-00121-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.