IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v37y2007i6p526-538.html
   My bibliography  Save this article

Fewer Equipment Changeovers for the Embroidery Process at Oxford Industries

Author

Listed:
  • Melissa R. Bowers

    (College of Business Administration, The University of Tennessee, Knoxville, Tennessee 37996)

  • Anurag Agarwal

    (Transportation Center, The University of Tennessee, Knoxville, Tennessee 37932)

Abstract

Oxford Industries, Inc., a leading US apparel manufacturer, implemented a scheduling algorithm that significantly reduced equipment changeovers in its in-house embroidery facility. The company was experiencing difficulties meeting due dates in one of its more profitable, new markets---branded custom-embroidered golfwear. The time Oxford was spending on equipment changeovers was leaving insufficient processing time to meet a surge in demand in this new market. We identified an opportunity for increased production capacity through more efficient scheduling of sequence-dependent changeovers among garments. During the period that we studied, the use of the scheduling algorithm reduced the number of changeovers by an average of 88 percent per order.

Suggested Citation

  • Melissa R. Bowers & Anurag Agarwal, 2007. "Fewer Equipment Changeovers for the Embroidery Process at Oxford Industries," Interfaces, INFORMS, vol. 37(6), pages 526-538, December.
  • Handle: RePEc:inm:orinte:v:37:y:2007:i:6:p:526-538
    DOI: 10.1287/inte.1070.0320
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.1070.0320
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.1070.0320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gendreau, Michel & Laporte, Gilbert & Guimaraes, Eduardo Morais, 2001. "A divide and merge heuristic for the multiprocessor scheduling problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 133(1), pages 183-189, August.
    2. Lee, Sang M. & Asllani, Arben A., 2004. "Job scheduling with dual criteria and sequence-dependent setups: mathematical versus genetic programming," Omega, Elsevier, vol. 32(2), pages 145-153, April.
    3. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    2. Martin, Clarence H, 2009. "A hybrid genetic algorithm/mathematical programming approach to the multi-family flowshop scheduling problem with lot streaming," Omega, Elsevier, vol. 37(1), pages 126-137, February.
    3. Nauss, Robert M., 2008. "Optimal sequencing in the presence of setup times for tow/barge traffic through a river lock," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1268-1281, June.
    4. Armentano, Vinicius Amaral & de Franca Filho, Moacir Felizardo, 2007. "Minimizing total tardiness in parallel machine scheduling with setup times: An adaptive memory-based GRASP approach," European Journal of Operational Research, Elsevier, vol. 183(1), pages 100-114, November.
    5. Marko Ɖurasević & Domagoj Jakobović, 2019. "Creating dispatching rules by simple ensemble combination," Journal of Heuristics, Springer, vol. 25(6), pages 959-1013, December.
    6. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
    7. Ravindran Vijayalakshmi, Vipin & Schröder, Marc & Tamir, Tami, 2024. "Minimizing total completion time with machine-dependent priority lists," European Journal of Operational Research, Elsevier, vol. 315(3), pages 844-854.
    8. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    9. Havill, Jessen T. & Mao, Weizhen, 2008. "Competitive online scheduling of perfectly malleable jobs with setup times," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1126-1142, June.
    10. Dirk Briskorn & Konrad Stephan & Nils Boysen, 2022. "Minimizing the makespan on a single machine subject to modular setups," Journal of Scheduling, Springer, vol. 25(1), pages 125-137, February.
    11. Grundel, Soesja & Çiftçi, Barış & Borm, Peter & Hamers, Herbert, 2013. "Family sequencing and cooperation," European Journal of Operational Research, Elsevier, vol. 226(3), pages 414-424.
    12. D Biskup & M Feldmann, 2006. "Lot streaming with variable sublots: an integer programming formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 296-303, March.
    13. Claassen, G.D.H., 2014. "Mixed integer (0–1) fractional programming for decision support in paper production industry," Omega, Elsevier, vol. 43(C), pages 21-29.
    14. Mohammad Reza Hosseinzadeh & Mehdi Heydari & Mohammad Mahdavi Mazdeh, 2022. "Mathematical modeling and two metaheuristic algorithms for integrated process planning and group scheduling with sequence-dependent setup time," Operational Research, Springer, vol. 22(5), pages 5055-5105, November.
    15. Allahverdi, Ali, 2006. "Two-machine flowshop scheduling problem to minimize total completion time with bounded setup and processing times," International Journal of Production Economics, Elsevier, vol. 103(1), pages 386-400, September.
    16. Fátima Pilar & Eliana Costa e Silva & Ana Borges, 2023. "Optimizing Vehicle Repairs Scheduling Using Mixed Integer Linear Programming: A Case Study in the Portuguese Automobile Sector," Mathematics, MDPI, vol. 11(11), pages 1-23, June.
    17. Sheikh, Shaya & Komaki, G.M. & Kayvanfar, Vahid & Teymourian, Ehsan, 2019. "Multi-Stage assembly flow shop with setup time and release time," Operations Research Perspectives, Elsevier, vol. 6(C).
    18. Alessandro Agnetis & Arianna Alfieri & Gaia Nicosia, 2009. "Single-Machine Scheduling Problems with Generalized Preemption," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 1-12, February.
    19. Ciavotta, Michele & Detti, Paolo & Meloni, Carlo & Pranzo, Marco, 2008. "A bi-objective coordination setup problem in a two-stage production system," European Journal of Operational Research, Elsevier, vol. 189(3), pages 734-745, September.
    20. Philip Doganis & Haralambos Sarimveis, 2008. "Optimal production scheduling for the dairy industry," Annals of Operations Research, Springer, vol. 159(1), pages 315-331, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:37:y:2007:i:6:p:526-538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.