IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v37y2009i1p126-137.html
   My bibliography  Save this article

A hybrid genetic algorithm/mathematical programming approach to the multi-family flowshop scheduling problem with lot streaming

Author

Listed:
  • Martin, Clarence H

Abstract

This paper presents a hybrid genetic algorithm/mathematical programming heuristic for the n-job, m-machine flowshop problems with lot streaming. The number of sublots for each job and the size of sublots are directly addressed by the heuristic and setups may be sequence-dependent. A new aspect of the problem, the interleaving of sublots from different jobs in the processing sequence, is developed and addressed. Computational results from 12 randomly generated test sets of 24 problems each are presented.

Suggested Citation

  • Martin, Clarence H, 2009. "A hybrid genetic algorithm/mathematical programming approach to the multi-family flowshop scheduling problem with lot streaming," Omega, Elsevier, vol. 37(1), pages 126-137, February.
  • Handle: RePEc:eee:jomega:v:37:y:2009:i:1:p:126-137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(06)00134-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Chuen-Lung & Vempati, Venkateswara S. & Aljaber, Nasser, 1995. "An application of genetic algorithms for flow shop problems," European Journal of Operational Research, Elsevier, vol. 80(2), pages 389-396, January.
    2. Aldowaisan, Tariq & Allahverdi, Ali, 2004. "New heuristics for m-machine no-wait flowshop to minimize total completion time," Omega, Elsevier, vol. 32(5), pages 345-352, October.
    3. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.
    4. Lee, Sang M. & Asllani, Arben A., 2004. "Job scheduling with dual criteria and sequence-dependent setups: mathematical versus genetic programming," Omega, Elsevier, vol. 32(2), pages 145-153, April.
    5. Christian Prins, 2000. "Competitive genetic algorithms for the open-shop scheduling problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(3), pages 389-411, December.
    6. Ruiz, Rubén & Maroto, Concepciøn & Alcaraz, Javier, 2006. "Two new robust genetic algorithms for the flowshop scheduling problem," Omega, Elsevier, vol. 34(5), pages 461-476, October.
    7. Crauwels, H. A. J. & Potts, C. N. & Van Wassenhove, L. N., 1996. "Local search heuristics for single-machine scheduling with batching to minimize the number of late jobs," European Journal of Operational Research, Elsevier, vol. 90(2), pages 200-213, April.
    8. Nicholas G. Hall & Marc E. Posner, 2001. "Generating Experimental Data for Computational Testing with Machine Scheduling Applications," Operations Research, INFORMS, vol. 49(6), pages 854-865, December.
    9. Gupta, Jatinder N.D. & Stafford, Edward Jr., 2006. "Flowshop scheduling research after five decades," European Journal of Operational Research, Elsevier, vol. 169(3), pages 699-711, March.
    10. Dan Trietsch & Kenneth R. Baker, 1993. "Basic Techniques for Lot Streaming," Operations Research, INFORMS, vol. 41(6), pages 1065-1076, December.
    11. Sen, Alper & Topaloglu, Engin & Benli, Omer S., 1998. "Optimal streaming of a single job in a two-stage flow shop," European Journal of Operational Research, Elsevier, vol. 110(1), pages 42-62, October.
    12. Huq, Faizul & Cutright, Kenneth & Martin, Clarence, 2004. "Employee scheduling and makespan minimization in a flow shop with multi-processor work stations: a case study," Omega, Elsevier, vol. 32(2), pages 121-129, April.
    13. Tseng, Fan T. & Stafford, Edward F. & Gupta, Jatinder N. D., 2004. "An empirical analysis of integer programming formulations for the permutation flowshop," Omega, Elsevier, vol. 32(4), pages 285-293, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Quan-Ke & Ruiz, Rubén, 2012. "An estimation of distribution algorithm for lot-streaming flow shop problems with setup times," Omega, Elsevier, vol. 40(2), pages 166-180, April.
    2. Tzu-Li Chen & Chen-Yang Cheng & Yi-Han Chou, 2020. "Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming," Annals of Operations Research, Springer, vol. 290(1), pages 813-836, July.
    3. Gribkovskaia, Irina V. & Kovalev, Sergey & Werner, Frank, 2010. "Batching for work and rework processes on dedicated facilities to minimize the makespan," Omega, Elsevier, vol. 38(6), pages 522-527, December.
    4. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2012. "Determining the optimal double-component assignment for a stochastic computer network," Omega, Elsevier, vol. 40(1), pages 120-130, January.
    5. Karapetyan, Daniel & Mitrovic Minic, Snezana & Malladi, Krishna T. & Punnen, Abraham P., 2015. "Satellite downlink scheduling problem: A case study," Omega, Elsevier, vol. 53(C), pages 115-123.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D Biskup & M Feldmann, 2006. "Lot streaming with variable sublots: an integer programming formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 296-303, March.
    2. Pan, Quan-Ke & Ruiz, Rubén, 2012. "An estimation of distribution algorithm for lot-streaming flow shop problems with setup times," Omega, Elsevier, vol. 40(2), pages 166-180, April.
    3. Vallada, Eva & Ruiz, Rubén, 2009. "Cooperative metaheuristics for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 193(2), pages 365-376, March.
    4. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
    5. Rad, Shahriar Farahmand & Ruiz, Rubén & Boroojerdian, Naser, 2009. "New high performing heuristics for minimizing makespan in permutation flowshops," Omega, Elsevier, vol. 37(2), pages 331-345, April.
    6. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    7. Hatami, Sara & Ruiz, Rubén & Andrés-Romano, Carlos, 2015. "Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times," International Journal of Production Economics, Elsevier, vol. 169(C), pages 76-88.
    8. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    9. Nicholas G. Hall & Zhixin Liu, 2010. "Capacity Allocation and Scheduling in Supply Chains," Operations Research, INFORMS, vol. 58(6), pages 1711-1725, December.
    10. Pang, King-Wah, 2013. "A genetic algorithm based heuristic for two machine no-wait flowshop scheduling problems with class setup times that minimizes maximum lateness," International Journal of Production Economics, Elsevier, vol. 141(1), pages 127-136.
    11. Vallada, Eva & Ruiz, Rubén & Framinan, Jose M., 2015. "New hard benchmark for flowshop scheduling problems minimising makespan," European Journal of Operational Research, Elsevier, vol. 240(3), pages 666-677.
    12. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    13. Naderi, Bahman & Ruiz, Rubén, 2014. "A scatter search algorithm for the distributed permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 323-334.
    14. Ruiz, Ruben & Maroto, Concepcion, 2006. "A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility," European Journal of Operational Research, Elsevier, vol. 169(3), pages 781-800, March.
    15. Liu, Jiyin, 2008. "Single-job lot streaming in m - 1 two-stage hybrid flowshops," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1171-1183, June.
    16. S.S. Panwalkar & Milton L. Smith & Christos Koulamas, 2013. "Review of the ordered and proportionate flow shop scheduling research," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(1), pages 46-55, February.
    17. Chung, Ji-Won & Oh, Seog-Moon & Choi, In-Chan, 2009. "A hybrid genetic algorithm for train sequencing in the Korean railway," Omega, Elsevier, vol. 37(3), pages 555-565, June.
    18. Liang, Wen-Yau & Huang, Chun-Che, 2008. "A hybrid approach to constrained evolutionary computing: Case of product synthesis," Omega, Elsevier, vol. 36(6), pages 1072-1085, December.
    19. Pessoa, Luciana S. & Andrade, Carlos E., 2018. "Heuristics for a flowshop scheduling problem with stepwise job objective function," European Journal of Operational Research, Elsevier, vol. 266(3), pages 950-962.
    20. Allahverdi, Ali & Aydilek, Harun, 2014. "Total completion time with makespan constraint in no-wait flowshops with setup times," European Journal of Operational Research, Elsevier, vol. 238(3), pages 724-734.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:37:y:2009:i:1:p:126-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.