IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v36y2024i6p1481-1500.html
   My bibliography  Save this article

A FAST Method for Nested Estimation

Author

Listed:
  • Guo Liang

    (Institute of Statistics and Big Data, Renmin University of China, Beijing 100872, China)

  • Kun Zhang

    (Institute of Statistics and Big Data, Renmin University of China, Beijing 100872, China)

  • Jun Luo

    (Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

Nested estimation involves estimating an expectation of a function of a conditional expectation and has many important applications in operations research and machine learning. Nested simulation is a classic approach to this estimation, and the convergence rate of the mean squared error (MSE) of nested simulation estimators is only of order Γ − 2 / 3 , where Γ is the simulation budget. To accelerate the convergence, in this paper, we establish a jackkniFe-bAsed neSted simulaTion (FAST) method for nested estimation, and a unified theoretical analysis for general functions in the nested estimation shows that the MSE of the proposed method converges at the faster rate of Γ − 4 / 5 or even Γ − 6 / 7 . We also provide an efficient algorithm that ensures the estimator’s MSE decays at its optimal rate in practice. In numerical experiments, we apply the proposed estimator in portfolio risk measurement and Bayesian experimental design in operations research and machine learning areas, respectively, and numerical results are consistent with the theory presented.

Suggested Citation

  • Guo Liang & Kun Zhang & Jun Luo, 2024. "A FAST Method for Nested Estimation," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1481-1500, December.
  • Handle: RePEc:inm:orijoc:v:36:y:2024:i:6:p:1481-1500
    DOI: 10.1287/ijoc.2023.0118
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2023.0118
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2023.0118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liu, Xiaoyu & Yan, Xing & Zhang, Kun, 2024. "Kernel quantile estimators for nested simulation with application to portfolio value-at-risk measurement," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1168-1177.
    2. Hai Lan & Barry L. Nelson & Jeremy Staum, 2010. "A Confidence Interval Procedure for Expected Shortfall Risk Measurement via Two-Level Simulation," Operations Research, INFORMS, vol. 58(5), pages 1481-1490, October.
    3. Jun Pan & Darrell Duffie, 2001. "Analytical value-at-risk with jumps and credit risk," Finance and Stochastics, Springer, vol. 5(2), pages 155-180.
    4. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    5. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    6. Corlu, Canan G. & Akcay, Alp & Xie, Wei, 2020. "Stochastic simulation under input uncertainty: A Review," Operations Research Perspectives, Elsevier, vol. 7(C).
    7. Mark Britten-Jones & Stephen M. Schaefer, 1999. "Non-Linear Value-at-Risk," Review of Finance, European Finance Association, vol. 2(2), pages 161-187.
    8. Yunpeng Sun & Daniel W. Apley & Jeremy Staum, 2011. "Efficient Nested Simulation for Estimating the Variance of a Conditional Expectation," Operations Research, INFORMS, vol. 59(4), pages 998-1007, August.
    9. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
    10. L. Jeff Hong & Sandeep Juneja & Guangwu Liu, 2017. "Kernel Smoothing for Nested Estimation with Application to Portfolio Risk Measurement," Operations Research, INFORMS, vol. 65(3), pages 657-673, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    2. L. Jeff Hong & Sandeep Juneja & Guangwu Liu, 2017. "Kernel Smoothing for Nested Estimation with Application to Portfolio Risk Measurement," Operations Research, INFORMS, vol. 65(3), pages 657-673, June.
    3. Guangxin Jiang & L. Jeff Hong & Barry L. Nelson, 2020. "Online Risk Monitoring Using Offline Simulation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 356-375, April.
    4. Wang, Tianxiang & Xu, Jie & Hu, Jian-Qiang & Chen, Chun-Hung, 2023. "Efficient estimation of a risk measure requiring two-stage simulation optimization," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1355-1365.
    5. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    6. Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
    7. Runhuan Feng & Peng Li, 2021. "Sample Recycling Method -- A New Approach to Efficient Nested Monte Carlo Simulations," Papers 2106.06028, arXiv.org.
    8. Kun Zhang & Ben Mingbin Feng & Guangwu Liu & Shiyu Wang, 2022. "Sample Recycling for Nested Simulation with Application in Portfolio Risk Measurement," Papers 2203.15929, arXiv.org.
    9. Dang, Ou & Feng, Mingbin & Hardy, Mary R., 2023. "Two-stage nested simulation of tail risk measurement: A likelihood ratio approach," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 1-24.
    10. Liu, Xiaoyu & Yan, Xing & Zhang, Kun, 2024. "Kernel quantile estimators for nested simulation with application to portfolio value-at-risk measurement," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1168-1177.
    11. Helin Zhu & Tianyi Liu & Enlu Zhou, 2015. "Risk Quantification in Stochastic Simulation under Input Uncertainty," Papers 1507.06015, arXiv.org, revised Dec 2017.
    12. Qiyun Pan & Eunshin Byon & Young Myoung Ko & Henry Lam, 2020. "Adaptive importance sampling for extreme quantile estimation with stochastic black box computer models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 524-547, October.
    13. Feng, Ben Mingbin & Li, Johnny Siu-Hang & Zhou, Kenneth Q., 2022. "Green nested simulation via likelihood ratio: Applications to longevity risk management," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 285-301.
    14. Xin Yun & Yanyi Ye & Hao Liu & Yi Li & Kin-Keung Lai, 2023. "Stylized Model of Lévy Process in Risk Estimation," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    15. Patrick Cheridito & John Ery & Mario V. Wüthrich, 2020. "Assessing Asset-Liability Risk with Neural Networks," Risks, MDPI, vol. 8(1), pages 1-17, February.
    16. Nifei Lin & Yingda Song & L. Jeff Hong, 2024. "Efficient Nested Estimation of CoVaR: A Decoupled Approach," Papers 2411.01319, arXiv.org.
    17. Weihuan Huang & Nifei Lin & L. Jeff Hong, 2022. "Monte-Carlo Estimation of CoVaR," Papers 2210.06148, arXiv.org.
    18. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2011. "Efficient Risk Estimation via Nested Sequential Simulation," Management Science, INFORMS, vol. 57(6), pages 1172-1194, June.
    19. Lucio Fernandez‐Arjona & Damir Filipović, 2022. "A machine learning approach to portfolio pricing and risk management for high‐dimensional problems," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 982-1019, October.
    20. Hongjun Ha & Daniel Bauer, 2022. "A least-squares Monte Carlo approach to the estimation of enterprise risk," Finance and Stochastics, Springer, vol. 26(3), pages 417-459, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:36:y:2024:i:6:p:1481-1500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.