IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v35y2023i1p138-157.html
   My bibliography  Save this article

Cost-Effective Social Media Influencer Marketing

Author

Listed:
  • Xiao Han

    (School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, China)

  • Leye Wang

    (School of Computer Science, Peking University, Beijing 100871, China; Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing 100871, China)

  • Weiguo Fan

    (Department of Business Analytics, Tippie College of Business, University of Iowa, Iowa City, Iowa 52242)

Abstract

It is becoming more and more promising that marketers hire influencers to launch campaigns for spreading items (e.g., articles or videos about products) over social media platforms. Such social media influencer marketing may generate tremendous utility if the influencers persuade their followers to adopt the recommended items. This could further spur extensive spontaneous item propagation on social media. Although prior studies mainly focus on influencer-selection strategies by the influencers’ traits, marketers with a number of items are often requested to determine both influencers and marketing items. The appropriateness between influencers and items is critical, but rarely considered in prior influencer-identification methods. We thus formulate and solve a novel cost-effective social media influencer marketing problem to maximize marketers’ utility by selecting appropriate pairwise combinations of influencers and items (i.e., item-influencer pairs). In particular, we first model utility functions and propose a simulation-based method to estimate the appropriateness of arbitrarily given item-influencer pairs by their potential utility. With the estimated utility, we devise an algorithm to iteratively select appropriate item-influencer pairs under various realistic conditions, including marketers’ budget, influencers’ payments, item-user fitness, social propagation, and influencers’ marketing slots. We theoretically prove that the marketing utility achieved by our method is near-optimal. We also conduct extensive empirical experiments with three real-world data sets to verify the superiority of our method in terms of cost-effectiveness and computational efficiency. Lastly, we discuss insightful theoretical and practical implications.

Suggested Citation

  • Xiao Han & Leye Wang & Weiguo Fan, 2023. "Cost-Effective Social Media Influencer Marketing," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 138-157, January.
  • Handle: RePEc:inm:orijoc:v:35:y:2023:i:1:p:138-157
    DOI: 10.1287/ijoc.2022.1246
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.1246
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.1246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Raghuram Iyengar & Christophe Van den Bulte & Thomas W. Valente, 2011. "Opinion Leadership and Social Contagion in New Product Diffusion," Marketing Science, INFORMS, vol. 30(2), pages 195-212, 03-04.
    2. Zan Huang & Daniel Dajun Zeng, 2011. "Why Does Collaborative Filtering Work? Transaction-Based Recommendation Model Validation and Selection by Analyzing Bipartite Random Graphs," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 138-152, February.
    3. Yanwu Yang & Daniel Zeng & Yinghui Yang & Jie Zhang, 2015. "Optimal Budget Allocation Across Search Advertising Markets," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 285-300, May.
    4. De Bruyn, Arnaud & Lilien, Gary L., 2008. "A multi-stage model of word-of-mouth influence through viral marketing," International Journal of Research in Marketing, Elsevier, vol. 25(3), pages 151-163.
    5. Marios Koufaris, 2002. "Applying the Technology Acceptance Model and Flow Theory to Online Consumer Behavior," Information Systems Research, INFORMS, vol. 13(2), pages 205-223, June.
    6. Puneet Manchanda & Ying Xie & Nara Youn, 2008. "The Role of Targeted Communication and Contagion in Product Adoption," Marketing Science, INFORMS, vol. 27(6), pages 961-976, 11-12.
    7. Cho, Youngsang & Hwang, Junseok & Lee, Daeho, 2012. "Identification of effective opinion leaders in the diffusion of technological innovation: A social network approach," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 97-106.
    8. Paulo A. Pereira & Fernando A. C. C. Fontes & Dalila B. M. M. Fontes, 2008. "A Decision Support System for Planning Promotion Time Slots," Operations Research Proceedings, in: Jörg Kalcsics & Stefan Nickel (ed.), Operations Research Proceedings 2007, pages 147-152, Springer.
    9. Hinz, Oliver & Skiera, Bernd & Barrot, Christian & Becker, Jan, 2011. "Seeding Strategies for Viral Marketing: An Empirical Comparison," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 56543, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Ralf van der Lans & Gerrit van Bruggen & Jehoshua Eliashberg & Berend Wierenga, 2010. "A Viral Branching Model for Predicting the Spread of Electronic Word of Mouth," Marketing Science, INFORMS, vol. 29(2), pages 348-365, 03-04.
    11. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    12. Sinan Aral, 2011. "Commentary--Identifying Social Influence: A Comment on Opinion Leadership and Social Contagion in New Product Diffusion," Marketing Science, INFORMS, vol. 30(2), pages 217-223, 03-04.
    13. Zhepeng Li & Xiao Fang & Xue Bai & Olivia R. Liu Sheng, 2017. "Utility-Based Link Recommendation for Online Social Networks," Management Science, INFORMS, vol. 63(6), pages 1938-1952, June.
    14. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    15. Zhang, Yuchi & Moe, Wendy W. & Schweidel, David A., 2017. "Modeling the role of message content and influencers in social media rebroadcasting," International Journal of Research in Marketing, Elsevier, vol. 34(1), pages 100-119.
    16. Gene Moo Lee & Shu He & Joowon Lee & Andrew B. Whinston, 2020. "Matching Mobile Applications for Cross-Promotion," Information Systems Research, INFORMS, vol. 31(3), pages 865-891, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muller, Eitan & Peres, Renana, 2019. "The effect of social networks structure on innovation performance: A review and directions for research," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 3-19.
    2. Nejad, Mohammad G. & Amini, Mehdi & Babakus, Emin, 2015. "Success Factors in Product Seeding: The Role of Homophily," Journal of Retailing, Elsevier, vol. 91(1), pages 68-88.
    3. Zhang, Honghong & Fam, Kim-Shyan & Goh, Tiong-Thye & Dai, Xin, 2018. "When are influentials equally influenceable? The strength of strong ties in new product adoption," Journal of Business Research, Elsevier, vol. 82(C), pages 160-170.
    4. Sharad Goel & Daniel G. Goldstein, 2014. "Predicting Individual Behavior with Social Networks," Marketing Science, INFORMS, vol. 33(1), pages 82-93, January.
    5. Landsman, Vardit & Nitzan, Irit, 2020. "Cross-decision social effects in product adoption and defection decisions," International Journal of Research in Marketing, Elsevier, vol. 37(2), pages 213-235.
    6. Sinan Aral & Dylan Walker, 2014. "Tie Strength, Embeddedness, and Social Influence: A Large-Scale Networked Experiment," Management Science, INFORMS, vol. 60(6), pages 1352-1370, June.
    7. Sarah Gelper & Ralf van der Lans & Gerrit van Bruggen, 2021. "Competition for Attention in Online Social Networks: Implications for Seeding Strategies," Management Science, INFORMS, vol. 67(2), pages 1026-1047, February.
    8. Pescher, Christian & Reichhart, Philipp & Spann, Martin, 2014. "Consumer Decision-making Processes in Mobile Viral Marketing Campaigns," Journal of Interactive Marketing, Elsevier, vol. 28(1), pages 43-54.
    9. Bilgicer, Tolga & Jedidi, Kamel & Lehmann, Donald R. & Neslin, Scott A., 2015. "Social Contagion and Customer Adoption of New Sales Channels," Journal of Retailing, Elsevier, vol. 91(2), pages 254-271.
    10. Olivier Toubia & Jacob Goldenberg & Rosanna Garcia, 2014. "Improving Penetration Forecasts Using Social Interactions Data," Management Science, INFORMS, vol. 60(12), pages 3049-3066, December.
    11. Sinan Aral & Dylan Walker, 2011. "Creating Social Contagion Through Viral Product Design: A Randomized Trial of Peer Influence in Networks," Management Science, INFORMS, vol. 57(9), pages 1623-1639, February.
    12. Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2019. "Individual-level social influence identification in social media: A learning-simulation coordinated method," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1005-1015.
    13. Viswanathan, Vijay & Sese, F. Javier & Krafft, Manfred, 2017. "Social influence in the adoption of a B2B loyalty program: The role of elite status members," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 901-918.
    14. Yansong Hu & Christophe Van den Bulte, 2014. "Nonmonotonic Status Effects in New Product Adoption," Marketing Science, INFORMS, vol. 33(4), pages 509-533, July.
    15. Nejad, Mohammad G. & Amini, Mehdi, 2024. "Designing profitable seeding Programs: The effects of social network properties and consumer homophily," Journal of Business Research, Elsevier, vol. 173(C).
    16. Meyners, Jannik & Barrot, Christian & Becker, Jan U. & Bodapati, Anand V., 2017. "Reward-scrounging in customer referral programs," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 382-398.
    17. Florian Probst & Laura Grosswiele & Regina Pfleger, 2013. "Who will lead and who will follow: Identifying Influential Users in Online Social Networks," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 5(3), pages 179-193, June.
    18. Xiao Fang & Paul Jen-Hwa Hu & Zhepeng (Lionel) Li & Weiyu Tsai, 2013. "Predicting Adoption Probabilities in Social Networks," Information Systems Research, INFORMS, vol. 24(1), pages 128-145, March.
    19. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    20. Qingliang Wang & Fred Miao & Giri Kumar Tayi & En Xie, 2019. "What makes online content viral? The contingent effects of hub users versus non–hub users on social media platforms," Journal of the Academy of Marketing Science, Springer, vol. 47(6), pages 1005-1026, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:35:y:2023:i:1:p:138-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.