IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v319y2024i3p891-907.html
   My bibliography  Save this article

Optimal day-ahead offering strategy for large producers based on market price response learning

Author

Listed:
  • Alcántara, Antonio
  • Ruiz, Carlos

Abstract

In day-ahead electricity markets based on uniform marginal pricing, small variations in the offering and bidding curves may substantially modify the resulting market outcomes. In this work, we deal with the problem of finding the optimal offering curve for a risk-averse profit-maximizing generating company (GENCO) in a data-driven context. In particular, a large GENCO’s market share may imply that its offering strategy can alter the marginal price formation, which can be used to increase profit. We tackle this problem from a novel perspective. First, we propose an optimization-based methodology to summarize each GENCO’s step-wise supply curves into a subset of representative price-energy blocks. Then, the relationship between the resulting market price and the energy block offering prices is modeled through a probabilistic forecasting tool: a Distributional Neural Network, which also allows us to generate stochastic scenarios for the sensibility of the market towards the GENCO strategy via a set of linear constraints. Finally, this predictive model is embedded in the stochastic optimization model employing a constraint learning approach. Results show how allowing the GENCO to deviate from its true marginal costs renders significant changes in its profits and the marginal price of the market. Additionally, these results have also been tested in an out-of-sample validation setting, showing how this optimal offering strategy can effective in a real-world market context.

Suggested Citation

  • Alcántara, Antonio & Ruiz, Carlos, 2024. "Optimal day-ahead offering strategy for large producers based on market price response learning," European Journal of Operational Research, Elsevier, vol. 319(3), pages 891-907.
  • Handle: RePEc:eee:ejores:v:319:y:2024:i:3:p:891-907
    DOI: 10.1016/j.ejor.2024.06.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724005186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.06.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:319:y:2024:i:3:p:891-907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.