IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i2p710-728.html
   My bibliography  Save this article

Influence Maximization with Latency Requirements on Social Networks

Author

Listed:
  • S. Raghavan

    (Robert H. Smith School of Business and Institute for Systems Research, University of Maryland, College Park, Maryland 20742)

  • Rui Zhang

    (Leeds School of Business, University of Colorado, Boulder, Colorado 80309)

Abstract

Targeted marketing strategies are of significant interest in the smartapp economy. Typically, one seeks to identify individuals to strategically target in a social network so that the network is influenced at a minimal cost. In many practical settings, the effects of direct influence predominate, leading to the positive influence dominating set with partial payments (PIDS-PP) problem that we discuss in this paper. The PIDS-PP problem is NP-complete because it generalizes the dominating set problem. We discuss several mixed integer programming formulations for the PIDS-PP problem. First, we describe two compact formulations on the payment space. We then develop a stronger compact extended formulation. We show that when the underlying graph is a tree, this compact extended formulation provides integral solutions for the node selection variables. In conjunction, we describe a polynomial-time dynamic programming algorithm for the PIDS-PP problem on trees. We project the compact extended formulation onto the payment space, providing an equivalently strong formulation that has exponentially many constraints. We present a polynomial time algorithm to solve the associated separation problem. Our computational experience on a test bed of 100 real-world graph instances (with up to approximately 465,000 nodes and 835,000 edges) demonstrates the efficacy of our strongest payment space formulation. It finds solutions that are on average 0.4% from optimality and solves 80 of the 100 instances to optimality. Summary of Contribution: The study of influence propagation is important in a number of applications including marketing, epidemiology, and healthcare. Typically, in these problems, one seeks to identify individuals to strategically target in a social network so that the entire network is influenced at a minimal cost. With the ease of tracking consumers in the smartapp economy, the scope and nature of these problems have become larger. Consequently, there is considerable interest across multiple research communities in computationally solving large-scale influence maximization problems, which thus represent significant opportunities for the development of operations research–based methods and analysis in this interface. This paper introduces the positive influence dominating set with partial payments (PIDS-PP) problem, an influence maximization problem where the effects of direct influence predominate, and it is possible to make partial payments to nodes that are not targeted. The paper focuses on model development to solve large-scale PIDS-PP problems. To this end, starting from an initial base optimization model, it uses several operations research model strengthening techniques to develop two equivalent models that have strong computational performance (and can be theoretically shown to be the best model for trees). Computational experiments on a test bed of 100 real-world graph instances (with up to approximately 465,000 nodes and 835,000 edges) attest to the efficacy of the best model, which finds solutions that are on average 0.4% from optimality and solves 80 of the 100 instances to optimality.

Suggested Citation

  • S. Raghavan & Rui Zhang, 2022. "Influence Maximization with Latency Requirements on Social Networks," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 710-728, March.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:2:p:710-728
    DOI: 10.1287/ijoc.2021.1095
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1095
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Balabhaskar Balasundaram & Sergiy Butenko & Illya V. Hicks, 2011. "Clique Relaxations in Social Network Analysis: The Maximum k -Plex Problem," Operations Research, INFORMS, vol. 59(1), pages 133-142, February.
    2. Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Illya V. Hicks, 2016. "On the 2-Club Polytope of Graphs," Operations Research, INFORMS, vol. 64(6), pages 1466-1481, December.
    3. Anurag Verma & Austin Buchanan & Sergiy Butenko, 2015. "Solving the Maximum Clique and Vertex Coloring Problems on Very Large Sparse Networks," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 164-177, February.
    4. Lin, Geng & Guan, Jian & Feng, Huibin, 2018. "An ILP based memetic algorithm for finding minimum positive influence dominating sets in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 199-209.
    5. Jose L. Walteros & Austin Buchanan, 2020. "Why Is Maximum Clique Often Easy in Practice?," Operations Research, INFORMS, vol. 68(6), pages 1866-1895, November.
    6. Brown, Jacqueline Johnson & Reingen, Peter H, 1987. "Social Ties and Word-of-Mouth Referral Behavior," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 14(3), pages 350-362, December.
    7. Bin Zhang & Paul A. Pavlou & Ramayya Krishnan, 2018. "On Direct vs. Indirect Peer Influence in Large Social Networks," Information Systems Research, INFORMS, vol. 29(2), pages 292-314, June.
    8. Thang N. Dinh & Yilin Shen & Dung T. Nguyen & My T. Thai, 2014. "On the approximability of positive influence dominating set in social networks," Journal of Combinatorial Optimization, Springer, vol. 27(3), pages 487-503, April.
    9. Xu Zhu & Jieun Yu & Wonjun Lee & Donghyun Kim & Shan Shan & Ding-Zhu Du, 2010. "New dominating sets in social networks," Journal of Global Optimization, Springer, vol. 48(4), pages 633-642, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Raghavan & Rui Zhang, 2022. "Rapid Influence Maximization on Social Networks: The Positive Influence Dominating Set Problem," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1345-1365, May.
    2. Weidong Chen & Hao Zhong & Lidong Wu & Ding-Zhu Du, 2022. "A general greedy approximation algorithm for finding minimum positive influence dominating sets in social networks," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 1-20, August.
    3. Yuho Chung & Yiwei Li & Jianmin Jia, 2021. "Exploring embeddedness, centrality, and social influence on backer behavior: the role of backer networks in crowdfunding," Journal of the Academy of Marketing Science, Springer, vol. 49(5), pages 925-946, September.
    4. Zhou, Yi & Lin, Weibo & Hao, Jin-Kao & Xiao, Mingyu & Jin, Yan, 2022. "An effective branch-and-bound algorithm for the maximum s-bundle problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 27-39.
    5. Veremyev, Alexander & Boginski, Vladimir & Pasiliao, Eduardo L. & Prokopyev, Oleg A., 2022. "On integer programming models for the maximum 2-club problem and its robust generalizations in sparse graphs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 86-101.
    6. Tingting Song & Qian Tang & Jinghua Huang, 2019. "Triadic Closure, Homophily, and Reciprocation: An Empirical Investigation of Social Ties Between Content Providers," Information Systems Research, INFORMS, vol. 30(3), pages 912-926, September.
    7. Balasundaram, Balabhaskar & Borrero, Juan S. & Pan, Hao, 2022. "Graph signatures: Identification and optimization," European Journal of Operational Research, Elsevier, vol. 296(3), pages 764-775.
    8. Landsman, Vardit & Nitzan, Irit, 2020. "Cross-decision social effects in product adoption and defection decisions," International Journal of Research in Marketing, Elsevier, vol. 37(2), pages 213-235.
    9. Timo Gschwind & Stefan Irnich & Fabio Furini & Roberto Wolfler Calvo, 2017. "Social Network Analysis and Community Detection by Decomposing a Graph into Relaxed Cliques," Working Papers 1722, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    10. David Bergman & Andre A. Cire & Willem-Jan van Hoeve & J. N. Hooker, 2016. "Discrete Optimization with Decision Diagrams," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 47-66, February.
    11. Choo Yeon Kim & Seong Soo Cha, 2023. "Effect of SNS Characteristics for Dining Out on Customer Satisfaction and Online Word of Mouth," SAGE Open, , vol. 13(3), pages 21582440231, September.
    12. Jennifer K D’Angelo & Kristin Diehl & Lisa A Cavanaugh, 2019. "Lead by Example? Custom-Made Examples Created by Close Others Lead Consumers to Make Dissimilar Choices," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 46(4), pages 750-773.
    13. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    14. Feixiang Zhang & Liyong Zong, 2014. "Dissemination of Word of Mouth Based on SNA Centrality Modeling and Power of Actors - An Empirical Analysis of Internet Word of Mouth," International Journal of Business Administration, International Journal of Business Administration, Sciedu Press, vol. 5(5), pages 65-70, September.
    15. Wang, Le & Luo, Xin (Robert) & Li, Han, 2022. "Envy or conformity? An empirical investigation of peer influence on the purchase of non-functional items in mobile free-to-play games," Journal of Business Research, Elsevier, vol. 147(C), pages 308-324.
    16. Yadav, Manjit S. & de Valck, Kristine & Hennig-Thurau, Thorsten & Hoffman, Donna L. & Spann, Martin, 2013. "Social Commerce: A Contingency Framework for Assessing Marketing Potential," Journal of Interactive Marketing, Elsevier, vol. 27(4), pages 311-323.
    17. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    18. Fang Di & Richards Timothy J. & Grebitus Carola, 2019. "Modeling Product Choices in a Peer Network," Forum for Health Economics & Policy, De Gruyter, vol. 22(1), pages 1-13, June.
    19. Jalees, Tariq & Tariq, Huma & Zaman, Syed Imran & Alam Kazmi, Syed Hasnain, 2015. "Social Media in Virtual Marketing," MPRA Paper 69868, University Library of Munich, Germany, revised 10 Apr 2015.
    20. Songhong Chen & Jian Ming Luo, 2023. "Understand Delegates Risk Attitudes and Behaviour: The Moderating Effect of Trust in COVID-19 Vaccination," IJERPH, MDPI, vol. 20(5), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:2:p:710-728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.