IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i2p1257-1271.html
   My bibliography  Save this article

Toward Robust Monitoring of Malicious Outbreaks

Author

Listed:
  • Shaojie Tang

    (Naveen Jindal School of Management, University of Texas at Dallas, Richardson, Texas 75080)

  • Siyuan Liu

    (Smeal College of Business, Pennsylvania State University, University Park, Pennsylvania 16802)

  • Xu Han

    (Gabelli School of Business, Fordham University, New York, New York 10023)

  • Yu Qiao

    (Department of Computer Science, Nanjing University, Nanjing, Jiangsu Province 210093, China)

Abstract

Recently, diffusion processes in social networks have attracted increasing attention within computer science, marketing science, social sciences, and political science. Although the majority of existing works focus on maximizing the reach of desirable diffusion processes, we are interested in deploying a group of monitors to detect malicious diffusion processes such as the spread of computer worms. In this work, we introduce and study the ( α , β ) -Monitoring Game} on networks. Our game is composed of two parties an attacker and a defender. The attacker can launch an attack by distributing a limited number of seeds (i.e., virus) to the network. Under our ( α , β ) -Monitoring Game, we say an attack is successful if and only if the following two conditions are satisfied: (1) the outbreak/propagation reaches at least α individuals without intervention, and (2) it has not been detected before reaching β individuals. Typically, we require that β is no larger than α in order to compensate the reaction delays after the outbreak has been detected. On the other end, the defender’s ultimate goal is to deploy a set of monitors in the network that can minimize attacker’s success ratio in the worst-case. (We also extend the basic model by considering a noisy diffusion model, where the propagation probabilities on each edge could vary within an interval.) Our work is built upon recent work in security games, our adversarial setting provides robust solutions in practice. Summary of Contribution: Although the diffusion processes in social networks have been extensively studied, most existing works aim at maximizing the reach of desirable diffusion processes. We are interested in deploying a group of monitors to detect malicious diffusion processes, such as the spread of computer worms. To capture the impact of model uncertainty, we consider a noisy diffusion model in which the propagation probabilities on each edge could vary within an interval. Our work is built upon recent work in security games; our adversarial setting leads to robust solutions in practice.

Suggested Citation

  • Shaojie Tang & Siyuan Liu & Xu Han & Yu Qiao, 2022. "Toward Robust Monitoring of Malicious Outbreaks," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1257-1271, March.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:2:p:1257-1271
    DOI: 10.1287/ijoc.2021.1077
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1077
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Alan Washburn & Kevin Wood, 1995. "Two-Person Zero-Sum Games for Network Interdiction," Operations Research, INFORMS, vol. 43(2), pages 243-251, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohit Singh & Weijun Xie, 2020. "Approximation Algorithms for D -optimal Design," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1512-1534, November.
    2. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    3. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    4. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    5. Majun Shi & Zishen Yang & Wei Wang, 2023. "Greedy Guarantees for Non-submodular Function Maximization Under Independent System Constraint with Applications," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 516-543, February.
    6. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.
    7. Mohammad Abouei Mehrizi & Federico Corò & Emilio Cruciani & Gianlorenzo D’Angelo, 2022. "Election control through social influence with voters’ uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 635-669, August.
    8. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    9. Suning Gong & Qingqin Nong & Shuyu Bao & Qizhi Fang & Ding-Zhu Du, 2023. "A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice," Journal of Global Optimization, Springer, vol. 85(1), pages 15-38, January.
    10. Emily M. Craparo & Mumtaz Karatas & Tobias U. Kuhn, 2017. "Sensor placement in active multistatic sonar networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 287-304, June.
    11. Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.
    12. Oded Berman & Dmitry Krass & Mozart B. C. Menezes, 2007. "Facility Reliability Issues in Network p -Median Problems: Strategic Centralization and Co-Location Effects," Operations Research, INFORMS, vol. 55(2), pages 332-350, April.
    13. Hongjie Guo & Jianzhong Li & Hong Gao, 2022. "Data source selection for approximate query," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2443-2459, November.
    14. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    15. repec:dgr:rugsom:99a17 is not listed on IDEAS
    16. Klages-Mundt, Ariah & Minca, Andreea, 2022. "Optimal intervention in economic networks using influence maximization methods," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1136-1148.
    17. Xin Chen & Qingqin Nong & Yan Feng & Yongchang Cao & Suning Gong & Qizhi Fang & Ker-I Ko, 2017. "Centralized and decentralized rumor blocking problems," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 314-329, July.
    18. Lehmann, Daniel, 2020. "Quality of local equilibria in discrete exchange economies," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 141-152.
    19. Xin Sun & Gaidi Li & Yapu Zhang & Zhenning Zhang, 2022. "Private non-monotone submodular maximization," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3212-3232, December.
    20. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2017. "Formulations and Approximation Algorithms for Multilevel Uncapacitated Facility Location," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 767-779, November.
    21. Eric DuBois & Ashley Peper & Laura A. Albert, 2023. "Interdicting Attack Plans with Boundedly Rational Players and Multiple Attackers: An Adversarial Risk Analysis Approach," Decision Analysis, INFORMS, vol. 20(3), pages 202-219, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:2:p:1257-1271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.