IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v32y4i2020p930-951.html
   My bibliography  Save this article

A Theoretical Framework for Learning Tumor Dose-Response Uncertainty in Individualized Spatiobiologically Integrated Radiotherapy

Author

Listed:
  • Ali Ajdari

    (Industrial and Systems Engineering, University of Washington, Seattle, Washington 98195)

  • Fatemeh Saberian

    (Industrial and Systems Engineering, University of Washington, Seattle, Washington 98195)

  • Archis Ghate

    (Industrial and Systems Engineering, University of Washington, Seattle, Washington 98195)

Abstract

Recent theoretical research has employed the linear-quadratic model of dose-response in stochastic control formulations for spatiobiologically integrated radiotherapy. The goal is to maximize the expected tumor kill while limiting the biologically effective dose administered to nearby organs at risk under tolerable limits. This is attempted by adapting fluence maps to the uncertain evolution of tumor-cell densities observed in functional images acquired at the beginning of each treatment session. One limitation of this research is that the treatment planner is assumed to know the probability distribution of a crucial dose-response parameter in the linear-quadratic model. This paper proposes a Bayesian stochastic control framework to relax this assumption. An algorithm rooted in certainty-equivalent control is devised to simultaneously learn this probability distribution while adapting fluence maps based on dose-response data collected from functional images over the treatment course. This algorithm’s performance is compared via numerical simulations with two other solution procedures that are also rooted in certainty equivalent control. The first one is a clairvoyant method. This assumes that the treatment planner knows the probability distribution, and hence serves as an idealized gold standard. The other one uses a fixed value of the dose-response parameter as available from the literature, and hence provides a natural benchmark without learning. The tumor kill achieved by the learning algorithm is statistically indistinguishable from the clairvoyant approach, whereas it can be about 20% higher than the no-learning benchmark. Both these conclusions bode well for individualized spatiobiologically integrated radiotherapy using functional images, at least in theory.

Suggested Citation

  • Ali Ajdari & Fatemeh Saberian & Archis Ghate, 2020. "A Theoretical Framework for Learning Tumor Dose-Response Uncertainty in Individualized Spatiobiologically Integrated Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 930-951, October.
  • Handle: RePEc:inm:orijoc:v:32:y:4:i:2020:p:930-951
    DOI: 10.1287/ijoc.2019.0896
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2019.0896
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2019.0896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kim, Minsun & Ghate, Archis & Phillips, Mark H., 2012. "A stochastic control formalism for dynamic biologically conformal radiation therapy," European Journal of Operational Research, Elsevier, vol. 219(3), pages 541-556.
    2. Fatemeh Saberian & Archis Ghate & Minsun Kim, 2017. "Spatiotemporally Optimal Fractionation in Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 422-437, August.
    3. H. Edwin Romeijn & Ravindra K. Ahuja & James F. Dempsey & Arvind Kumar, 2006. "A New Linear Programming Approach to Radiation Therapy Treatment Planning Problems," Operations Research, INFORMS, vol. 54(2), pages 201-216, April.
    4. Thomas Bortfeld & Jagdish Ramakrishnan & John N. Tsitsiklis & Jan Unkelbach, 2015. "Optimization of Radiation Therapy Fractionation Schedules in the Presence of Tumor Repopulation," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 788-803, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatemeh Saberian & Archis Ghate & Minsun Kim, 2017. "Spatiotemporally Optimal Fractionation in Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 422-437, August.
    2. Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.
    3. Z. Taşkın & J. Smith & H. Romeijn, 2012. "Mixed-integer programming techniques for decomposing IMRT fluence maps using rectangular apertures," Annals of Operations Research, Springer, vol. 196(1), pages 799-818, July.
    4. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    5. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    6. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    7. Thomas Bortfeld & Jagdish Ramakrishnan & John N. Tsitsiklis & Jan Unkelbach, 2015. "Optimization of Radiation Therapy Fractionation Schedules in the Presence of Tumor Repopulation," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 788-803, November.
    8. Dunbar, Michelle & O’Brien, Ricky & Froyland, Gary, 2020. "Optimising lung imaging for cancer radiation therapy," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1038-1052.
    9. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    10. Arkajyoti Roy & Shaunak S. Dabadghao & Ahmadreza Marandi, 2024. "Value of intermediate imaging in adaptive robust radiotherapy planning to manage radioresistance," Annals of Operations Research, Springer, vol. 339(3), pages 1307-1328, August.
    11. Z. Caner Taşkın & J. Cole Smith & H. Edwin Romeijn & James F. Dempsey, 2010. "Optimal Multileaf Collimator Leaf Sequencing in IMRT Treatment Planning," Operations Research, INFORMS, vol. 58(3), pages 674-690, June.
    12. Thomas Bortfeld & Timothy C. Y. Chan & Alexei Trofimov & John N. Tsitsiklis, 2008. "Robust Management of Motion Uncertainty in Intensity-Modulated Radiation Therapy," Operations Research, INFORMS, vol. 56(6), pages 1461-1473, December.
    13. Chan, Timothy C.Y. & Mišić, Velibor V., 2013. "Adaptive and robust radiation therapy optimization for lung cancer," European Journal of Operational Research, Elsevier, vol. 231(3), pages 745-756.
    14. Luis A. Fernández & Lucía Fernández, 2022. "Analytical Solution to the Radiotherapy Fractionation Problem Including Dose Bound Constraints," SN Operations Research Forum, Springer, vol. 3(3), pages 1-30, September.
    15. Michael Ferris & Rikhardur Einarsson & Ziping Jiang & David Shepard, 2006. "Sampling issues for optimization in radiotherapy," Annals of Operations Research, Springer, vol. 148(1), pages 95-115, November.
    16. Ali Adibi & Ehsan Salari, 2022. "Scalable Optimization Methods for Incorporating Spatiotemporal Fractionation into Intensity-Modulated Radiotherapy Planning," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1240-1256, March.
    17. Danielle A. Ripsman & Thomas G. Purdie & Timothy C. Y. Chan & Houra Mahmoudzadeh, 2022. "Robust Direct Aperture Optimization for Radiation Therapy Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2017-2038, July.
    18. Matthias Ehrgott & Çiğdem Güler & Horst Hamacher & Lizhen Shao, 2010. "Mathematical optimization in intensity modulated radiation therapy," Annals of Operations Research, Springer, vol. 175(1), pages 309-365, March.
    19. Misic, V.V. & Aleman, D.M. & Sharpe, M.B., 2010. "Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT," European Journal of Operational Research, Elsevier, vol. 205(3), pages 522-527, September.
    20. Shraddha Ghatkar, 2019. "Optimization of fractionation schemes and beamlet intensities in intensity-modulated radiation therapy with changing cancer tumor properties," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 46(4), pages 385-407, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:32:y:4:i:2020:p:930-951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.