IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v148y2006i1p95-11510.1007-s10479-006-0083-y.html
   My bibliography  Save this article

Sampling issues for optimization in radiotherapy

Author

Listed:
  • Michael Ferris
  • Rikhardur Einarsson
  • Ziping Jiang
  • David Shepard

Abstract

A wide variety of optimization problems and techniques are used in radiation treatment planning. The problems typically involve large amounts of data, derived from simulations of patient anatomy and the properties of the delivery device. We investigate a three phase approach for their solution based on sampling of the underlying data that determines optimal beam angles, wedge orientations and delivery intensities in patient examples. Phase I uses multiple coarse samplings of the data and linear programming to adapt the sampling and determine a collection of promising angles to use. Phase II solves the adapted sample problems as mixed integer programs using only the promising angles. Phase III refines the sampling further, and fixes most of the discrete decision variables to reduce computation times. Particular emphasis will be given to general principles that are applicable to large classes of treatment planning problems. Specific examples show enormous increase in speed of planning, without detriment to the solution quality. Copyright Springer Science+Business Media, LLC 2006

Suggested Citation

  • Michael Ferris & Rikhardur Einarsson & Ziping Jiang & David Shepard, 2006. "Sampling issues for optimization in radiotherapy," Annals of Operations Research, Springer, vol. 148(1), pages 95-115, November.
  • Handle: RePEc:spr:annopr:v:148:y:2006:i:1:p:95-115:10.1007/s10479-006-0083-y
    DOI: 10.1007/s10479-006-0083-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-0083-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-0083-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Xiao & D. Michalski & J.M. Galvin & Y. Censor, 2003. "The Least-Intensity Feasible Solution for Aperture-Based Inverse Planning in Radiation Therapy," Annals of Operations Research, Springer, vol. 119(1), pages 183-203, March.
    2. H. Edwin Romeijn & Ravindra K. Ahuja & James F. Dempsey & Arvind Kumar, 2006. "A New Linear Programming Approach to Radiation Therapy Treatment Planning Problems," Operations Research, INFORMS, vol. 54(2), pages 201-216, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Ehrgott & Çiğdem Güler & Horst Hamacher & Lizhen Shao, 2010. "Mathematical optimization in intensity modulated radiation therapy," Annals of Operations Research, Springer, vol. 175(1), pages 309-365, March.
    2. Z. Taşkın & J. Smith & H. Romeijn, 2012. "Mixed-integer programming techniques for decomposing IMRT fluence maps using rectangular apertures," Annals of Operations Research, Springer, vol. 196(1), pages 799-818, July.
    3. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    4. Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.
    5. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    6. Dunbar, Michelle & O’Brien, Ricky & Froyland, Gary, 2020. "Optimising lung imaging for cancer radiation therapy," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1038-1052.
    7. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    8. Arkajyoti Roy & Shaunak S. Dabadghao & Ahmadreza Marandi, 2024. "Value of intermediate imaging in adaptive robust radiotherapy planning to manage radioresistance," Annals of Operations Research, Springer, vol. 339(3), pages 1307-1328, August.
    9. Z. Caner Taşkın & J. Cole Smith & H. Edwin Romeijn & James F. Dempsey, 2010. "Optimal Multileaf Collimator Leaf Sequencing in IMRT Treatment Planning," Operations Research, INFORMS, vol. 58(3), pages 674-690, June.
    10. John W. Chinneck, 2004. "The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 16(3), pages 255-265, August.
    11. Thomas Bortfeld & Timothy C. Y. Chan & Alexei Trofimov & John N. Tsitsiklis, 2008. "Robust Management of Motion Uncertainty in Intensity-Modulated Radiation Therapy," Operations Research, INFORMS, vol. 56(6), pages 1461-1473, December.
    12. Gino J. Lim & Michael C. Ferris & Stephen J. Wright & David M. Shepard & Matthew A. Earl, 2007. "An Optimization Framework for Conformal Radiation Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 366-380, August.
    13. Chan, Timothy C.Y. & Mišić, Velibor V., 2013. "Adaptive and robust radiation therapy optimization for lung cancer," European Journal of Operational Research, Elsevier, vol. 231(3), pages 745-756.
    14. Felisa Preciado-Walters & Mark Langer & Ronald Rardin & Van Thai, 2006. "Column generation for IMRT cancer therapy optimization with implementable segments," Annals of Operations Research, Springer, vol. 148(1), pages 65-79, November.
    15. Noha Hamza & Ruhul Sarker & Daryl Essam, 2013. "Differential evolution with multi-constraint consensus methods for constrained optimization," Journal of Global Optimization, Springer, vol. 57(2), pages 583-611, October.
    16. Misic, V.V. & Aleman, D.M. & Sharpe, M.B., 2010. "Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT," European Journal of Operational Research, Elsevier, vol. 205(3), pages 522-527, September.
    17. Ali Ajdari & Fatemeh Saberian & Archis Ghate, 2020. "A Theoretical Framework for Learning Tumor Dose-Response Uncertainty in Individualized Spatiobiologically Integrated Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 930-951, October.
    18. Marc C. Robini & Feng Yang & Yuemin Zhu, 2020. "A stochastic approach to full inverse treatment planning for charged-particle therapy," Journal of Global Optimization, Springer, vol. 77(4), pages 853-893, August.
    19. Shabbir Ahmed & Ozan Gozbasi & Martin Savelsbergh & Ian Crocker & Tim Fox & Eduard Schreibmann, 2010. "An Automated Intensity-Modulated Radiation Therapy Planning System," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 568-583, November.
    20. Özge Karanfil & Yaman Barlas, 2008. "A Dynamic Simulator for the Management of Disorders of the Body Water Homeostasis," Operations Research, INFORMS, vol. 56(6), pages 1474-1492, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:148:y:2006:i:1:p:95-115:10.1007/s10479-006-0083-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.