IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v32y3i2020p682-696.html
   My bibliography  Save this article

Convex Relaxations for Quadratic On/Off Constraints and Applications to Optimal Transmission Switching

Author

Listed:
  • Ksenia Bestuzheva

    (Data61-CSIRO, Australian National University, Canberra 2601, Australia; Zuse Institute Berlin, 14195 Berlin, Germany)

  • Hassan Hijazi

    (Los Alamos National Laboratory, Los Alamos, New Mexico 87545)

  • Carleton Coffrin

    (Los Alamos National Laboratory, Los Alamos, New Mexico 87545)

Abstract

This paper studies mixed-integer nonlinear programs featuring disjunctive constraints and trigonometric functions and presents a strengthened version of the convex quadratic relaxation of the optimal transmission switching problem. We first characterize the convex hull of univariate quadratic on/off constraints in the space of original variables using perspective functions. We then introduce new tight quadratic relaxations for trigonometric functions featuring variables with asymmetrical bounds. These results are used to further tighten recent convex relaxations introduced for the optimal transmission switching problem in power systems. Using the proposed improvements, along with bound propagation, on 23 medium-sized test cases in the PGLib benchmark library with a relaxation gap of more than 1%, we reduce the gap to less than 1% on five instances. The tightened model has promising computational results when compared with state-of-the-art formulations.

Suggested Citation

  • Ksenia Bestuzheva & Hassan Hijazi & Carleton Coffrin, 2020. "Convex Relaxations for Quadratic On/Off Constraints and Applications to Optimal Transmission Switching," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 682-696, July.
  • Handle: RePEc:inm:orijoc:v:32:y:3:i:2020:p:682-696
    DOI: 10.1287/ijoc.2019.0900
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2019.0900
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2019.0900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pietro Belotti & Pierre Bonami & Matteo Fischetti & Andrea Lodi & Michele Monaci & Amaya Nogales-Gómez & Domenico Salvagnin, 2016. "On handling indicator constraints in mixed integer programming," Computational Optimization and Applications, Springer, vol. 65(3), pages 545-566, December.
    2. Ghaddar, Bissan & Jabr, Rabih A., 2019. "Power transmission network expansion planning: A semidefinite programming branch-and-bound approach," European Journal of Operational Research, Elsevier, vol. 274(3), pages 837-844.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jay, Devika & Swarup, K.S., 2021. "A comprehensive survey on reactive power ancillary service markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2023. "A mathematical programming-based solution method for the nonstationary inventory problem under correlated demand," European Journal of Operational Research, Elsevier, vol. 304(2), pages 515-524.
    2. Immanuel M. Bomze & Bo Peng, 2023. "Conic formulation of QPCCs applied to truly sparse QPs," Computational Optimization and Applications, Springer, vol. 84(3), pages 703-735, April.
    3. Joaquim Dias Garcia & Guilherme Bodin & Alexandre Street, 2024. "BilevelJuMP.jl: Modeling and Solving Bilevel Optimization Problems in Julia," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 327-335, March.
    4. Ma, Xiyuan & Rossi, Roberto & Archibald, Thomas Welsh, 2022. "Approximations for non-stationary stochastic lot-sizing under (s,Q)-type policy," European Journal of Operational Research, Elsevier, vol. 298(2), pages 573-584.
    5. Baldomero-Naranjo, Marta & Martínez-Merino, Luisa I. & Rodríguez-Chía, Antonio M., 2020. "Tightening big Ms in integer programming formulations for support vector machines with ramp loss," European Journal of Operational Research, Elsevier, vol. 286(1), pages 84-100.
    6. Carrizosa, Emilio & Ramírez-Ayerbe, Jasone & Romero Morales, Dolores, 2024. "Mathematical optimization modelling for group counterfactual explanations," European Journal of Operational Research, Elsevier, vol. 319(2), pages 399-412.
    7. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2018. "Computing non-stationary (s, S) policies using mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 271(2), pages 490-500.
    8. Sarid, Adi S. & Glynn, Peter W. & Tzur, Michal, 2024. "Power distribution in developing countries — Planning for effectiveness and equity," Omega, Elsevier, vol. 123(C).
    9. Dimitri J. Papageorgiou & Francisco Trespalacios, 2018. "Pseudo basic steps: bound improvement guarantees from Lagrangian decomposition in convex disjunctive programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 55-83, March.
    10. Cafieri, Sonia & Conn, Andrew R. & Mongeau, Marcel, 2023. "Mixed-integer nonlinear and continuous optimization formulations for aircraft conflict avoidance via heading and speed deviations," European Journal of Operational Research, Elsevier, vol. 310(2), pages 670-679.
    11. Francisco Jara-Moroni & John E. Mitchell & Jong-Shi Pang & Andreas Wächter, 2020. "An enhanced logical benders approach for linear programs with complementarity constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 687-714, August.
    12. Wogrin, S. & Tejada-Arango, D. & Delikaraoglou, S. & Botterud, A., 2020. "Assessing the impact of inertia and reactive power constraints in generation expansion planning," Applied Energy, Elsevier, vol. 280(C).
    13. Shiyu Liu & Ou Liu & Xiaoming Jiang, 2023. "An Efficient Algorithm for the Joint Replenishment Problem with Quantity Discounts, Minimum Order Quantity and Transport Capacity Constraints," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    14. Barbato, Michele & Ceselli, Alberto, 2024. "Mathematical programming for simultaneous feature selection and outlier detection under l1 norm," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1070-1084.
    15. Carina Moreira Costa & Dennis Kreber & Martin Schmidt, 2022. "An Alternating Method for Cardinality-Constrained Optimization: A Computational Study for the Best Subset Selection and Sparse Portfolio Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2968-2988, November.
    16. Wu, Baiyi & Li, Duan & Jiang, Rujun, 2019. "Quadratic convex reformulation for quadratic programming with linear on–off constraints," European Journal of Operational Research, Elsevier, vol. 274(3), pages 824-836.
    17. Maria Dicorato & Gioacchino Tricarico & Giuseppe Forte & Francesca Marasciuolo, 2021. "Technical Indicators for the Comparison of Power Network Development in Scenario Evaluations," Energies, MDPI, vol. 14(14), pages 1-25, July.
    18. Maximilian Merkert & Galina Orlinskaya & Dieter Weninger, 2022. "An exact projection-based algorithm for bilevel mixed-integer problems with nonlinearities," Journal of Global Optimization, Springer, vol. 84(3), pages 607-650, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:32:y:3:i:2020:p:682-696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.