IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v32y3i2020p547-564.html
   My bibliography  Save this article

Branch and Price for Chance-Constrained Bin Packing

Author

Listed:
  • Zheng Zhang

    (Department of Service Science and Operations Management, School of Management, Zhejiang University, 310058 Hangzhou, China; Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109)

  • Brian T. Denton

    (Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109)

  • Xiaolan Xie

    (Mines Saint-Etienne, Université Clermont Auvergne, CNRS, UMR 6158 LIMOS, Centre CIS, F-42023 Saint-Etienne, France; Antai College of Economics and Management, Shanghai Jiao Tong University, 200030 Shanghai, China)

Abstract

This article describes two versions of the chance-constrained stochastic bin-packing (CCSBP) problem that consider item-to-bin allocation decisions in the context of chance constraints on the total item size within the bins. The first version is a stochastic CCSBP (SP-CCSBP) problem, which assumes that the distributions of item sizes are known. We present a two-stage stochastic mixed-integer program (SMIP) for this problem and a Dantzig–Wolfe formulation suited to a branch-and-price (B&P) algorithm. We further enhance the formulation using coefficient strengthening and reformulations based on probabilistic packs and covers. The second version is a distributionally robust CCSBP (DR-CCSBP) problem, which assumes that the distributions of item sizes are ambiguous. Based on a closed-form expression for the DR chance constraints, we approximate the DR-CCSBP problem as a mixed-integer program that has significantly fewer integer variables than the SMIP of the SP-CCSBP problem, and our proposed B&P algorithm can directly solve its Dantzig–Wolfe formulation. We also show that the approach for the DR-CCSBP problem, in addition to providing robust solutions, can obtain near-optimal solutions to the SP-CCSBP problem. We implement a series of numerical experiments based on real data in the context of surgery scheduling, and the results demonstrate that our proposed B&P algorithm is computationally more efficient than a standard branch-and-cut algorithm, and it significantly improves upon the performance of a well-known bin-packing heuristic.

Suggested Citation

  • Zheng Zhang & Brian T. Denton & Xiaolan Xie, 2020. "Branch and Price for Chance-Constrained Bin Packing," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 547-564, July.
  • Handle: RePEc:inm:orijoc:v:32:y:3:i:2020:p:547-564
    DOI: 10.1287/ijoc.2019.0894
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2019.0894
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2019.0894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qingxia Kong & Chung-Yee Lee & Chung-Piaw Teo & Zhichao Zheng, 2013. "Scheduling Arrivals to a Stochastic Service Delivery System Using Copositive Cones," Operations Research, INFORMS, vol. 61(3), pages 711-726, June.
    2. François Vanderbeck, 2000. "On Dantzig-Wolfe Decomposition in Integer Programming and ways to Perform Branching in a Branch-and-Price Algorithm," Operations Research, INFORMS, vol. 48(1), pages 111-128, February.
    3. Brian T. Denton & Andrew J. Miller & Hari J. Balasubramanian & Todd R. Huschka, 2010. "Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty," Operations Research, INFORMS, vol. 58(4-part-1), pages 802-816, August.
    4. Vanderbeck, F. & Wolsey, L. A., 1996. "An exact algorithm for IP column generation," LIDAM Reprints CORE 1242, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Wang, Yu & Tang, Jiafu & Fung, Richard Y.K., 2014. "A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk," International Journal of Production Economics, Elsevier, vol. 158(C), pages 28-36.
    6. Kavinesh J. Singh & Andy B. Philpott & R. Kevin Wood, 2009. "Dantzig-Wolfe Decomposition for Solving Multistage Stochastic Capacity-Planning Problems," Operations Research, INFORMS, vol. 57(5), pages 1271-1286, October.
    7. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    8. Ho-Yin Mak & Ying Rong & Jiawei Zhang, 2015. "Appointment Scheduling with Limited Distributional Information," Management Science, INFORMS, vol. 61(2), pages 316-334, February.
    9. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    10. QIU, Feng & AHMED, Shabbir & DEY, Santanu S & WOLSEY, Laurence A, 2014. "Covering linear programming with violations," LIDAM Reprints CORE 2618, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Feng Qiu & Shabbir Ahmed & Santanu S. Dey & Laurence A. Wolsey, 2014. "Covering Linear Programming with Violations," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 531-546, August.
    12. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    13. G. C. Calafiore & L. El Ghaoui, 2006. "On Distributionally Robust Chance-Constrained Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 130(1), pages 1-22, July.
    14. Yongjia Song & James R. Luedtke & Simge Küçükyavuz, 2014. "Chance-Constrained Binary Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 735-747, November.
    15. Zeger Degraeve & Raf Jans, 2007. "A New Dantzig-Wolfe Reformulation and Branch-and-Price Algorithm for the Capacitated Lot-Sizing Problem with Setup Times," Operations Research, INFORMS, vol. 55(5), pages 909-920, October.
    16. Guglielmo Lulli & Suvrajeet Sen, 2004. "A Branch-and-Price Algorithm for Multistage Stochastic Integer Programming with Application to Stochastic Batch-Sizing Problems," Management Science, INFORMS, vol. 50(6), pages 786-796, June.
    17. Seyed Hossein Hashemi Doulabi & Louis-Martin Rousseau & Gilles Pesant, 2016. "A Constraint-Programming-Based Branch-and-Price-and-Cut Approach for Operating Room Planning and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 432-448, August.
    18. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    19. B. K. Pagnoncelli & S. Ahmed & A. Shapiro, 2009. "Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 399-416, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crainic, Teodor Gabriel & Perboli, Guido & Rei, Walter & Rosano, Mariangela & Lerma, Veronica, 2024. "Capacity planning with uncertainty on contract fulfillment," European Journal of Operational Research, Elsevier, vol. 314(1), pages 152-175.
    2. Shanshan Wang & Jinlin Li & Sanjay Mehrotra, 2021. "Chance-Constrained Multiple Bin Packing Problem with an Application to Operating Room Planning," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1661-1677, October.
    3. Guopeng Song & Roel Leus, 2022. "Parallel Machine Scheduling Under Uncertainty: Models and Exact Algorithms," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3059-3079, November.
    4. Saharnaz Mehrani & Carlos Cardonha & David Bergman, 2022. "Models and Algorithms for the Bin-Packing Problem with Minimum Color Fragmentation," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1070-1085, March.
    5. Novak, Antonin & Sucha, Premysl & Novotny, Matej & Stec, Richard & Hanzalek, Zdenek, 2022. "Scheduling jobs with normally distributed processing times on parallel machines," European Journal of Operational Research, Elsevier, vol. 297(2), pages 422-441.
    6. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahdi Noorizadegan & Abbas Seifi, 2018. "An efficient computational method for large scale surgery scheduling problems with chance constraints," Computational Optimization and Applications, Springer, vol. 69(2), pages 535-561, March.
    2. Lu, Mengshi & Nakao, Hideaki & Shen, Siqian & Zhao, Lin, 2021. "Non-profit resource allocation and service scheduling with cross-subsidization and uncertain resource consumptions," Omega, Elsevier, vol. 99(C).
    3. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    4. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    5. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    6. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2019. "Dynamic job assignment: A column generation approach with an application to surgery allocation," European Journal of Operational Research, Elsevier, vol. 272(1), pages 78-93.
    7. Subhash C. Sarin & Hanif D. Sherali & Seon Ki Kim, 2014. "A branch‐and‐price approach for the stochastic generalized assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(2), pages 131-143, March.
    8. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    9. Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2020. "Column-generation-based heuristic approaches to stochastic surgery scheduling with downstream capacity constraints," International Journal of Production Economics, Elsevier, vol. 229(C).
    10. Weijun Xie & Shabbir Ahmed, 2020. "Bicriteria Approximation of Chance-Constrained Covering Problems," Operations Research, INFORMS, vol. 68(2), pages 516-533, March.
    11. Jans, Raf, 2010. "Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 204(2), pages 251-254, July.
    12. Shanshan Wang & Jinlin Li & Sanjay Mehrotra, 2021. "Chance-Constrained Multiple Bin Packing Problem with an Application to Operating Room Planning," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1661-1677, October.
    13. Marc Peeters & Zeger Degraeve, 2004. "The Co-Printing Problem: A Packing Problem with a Color Constraint," Operations Research, INFORMS, vol. 52(4), pages 623-638, August.
    14. Sung, Inkyung & Lee, Taesik, 2016. "Optimal allocation of emergency medical resources in a mass casualty incident: Patient prioritization by column generation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 623-634.
    15. Weiwei Fan & L. Jeff Hong & Xiaowei Zhang, 2020. "Distributionally Robust Selection of the Best," Management Science, INFORMS, vol. 66(1), pages 190-208, January.
    16. Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
    17. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    18. Roshanaei, Vahid & Booth, Kyle E.C. & Aleman, Dionne M. & Urbach, David R. & Beck, J. Christopher, 2020. "Branch-and-check methods for multi-level operating room planning and scheduling," International Journal of Production Economics, Elsevier, vol. 220(C).
    19. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    20. Belií«n, Jeroen & Demeulemeester, Erik, 2008. "A branch-and-price approach for integrating nurse and surgery scheduling," European Journal of Operational Research, Elsevier, vol. 189(3), pages 652-668, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:32:y:3:i:2020:p:547-564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.