IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v29y2017i4p660-675.html
   My bibliography  Save this article

Content and Structure Coverage: Extracting a Diverse Information Subset

Author

Listed:
  • Baojun Ma

    (School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Qiang Wei

    (Research Center for Contemporary Management, School of Economics and Management, Tsinghua University, Beijing 100084, China)

  • Guoqing Chen

    (Research Center for Contemporary Management, School of Economics and Management, Tsinghua University, Beijing 100084, China)

  • Jin Zhang

    (School of Business, Renmin University of China, Beijing 100872, China)

  • Xunhua Guo

    (Research Center for Contemporary Management, School of Economics and Management, Tsinghua University, Beijing 100084, China)

Abstract

Recent years have witnessed a rapid increase in online data volume and the growing challenge of information overload for web use and applications. Thus, information diversity is of great importance to both information service providers and users of search services. Based on a diversity evaluation measure (namely, information coverage), a heuristic method— FastCov C+S -Select —with corresponding algorithms is designed on the greedy submodular idea. First, we devise the Cov C+S -Select algorithm, which possesses the characteristic of asymptotic optimality, to optimize information coverage using a strategy in the spirit of simulated annealing. To accelerate the efficiency of Cov C+S -Select , its fast approximation (i.e., FastCov C+S -Select ) is then developed through a heuristic strategy to downsize the solution space with the properties of information coverage. Furthermore, ample experiments have been conducted to show the effectiveness, efficiency, and parameter robustness of the proposed method, along with comparative analyses revealing the performance’s advantages over other related methods.

Suggested Citation

  • Baojun Ma & Qiang Wei & Guoqing Chen & Jin Zhang & Xunhua Guo, 2017. "Content and Structure Coverage: Extracting a Diverse Information Subset," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 660-675, November.
  • Handle: RePEc:inm:orijoc:v:29:y:2017:i:4:p:660-675
    DOI: 10.1287/ijoc.2017.0753
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2017.0753
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2017.0753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Amanda Spink & Dietmar Wolfram & Major B. J. Jansen & Tefko Saracevic, 2001. "Searching the web: The public and their queries," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 52(3), pages 226-234.
    3. B Suman & P Kumar, 2006. "A survey of simulated annealing as a tool for single and multiobjective optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1143-1160, October.
    4. Erik Brynjolfsson & Yu (Jeffrey) Hu & Michael D. Smith, 2003. "Consumer Surplus in the Digital Economy: Estimating the Value of Increased Product Variety at Online Booksellers," Management Science, INFORMS, vol. 49(11), pages 1580-1596, November.
    5. Prabuddha De & Yu (Jeffrey) Hu & Mohammad S. Rahman, 2010. "Technology Usage and Online Sales: An Empirical Study," Management Science, INFORMS, vol. 56(11), pages 1930-1945, November.
    6. Jiyin He & Edgar Meij & Maarten de Rijke, 2011. "Result diversification based on query-specific cluster ranking," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(3), pages 550-571, March.
    7. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zibiao Li & Han Li & Siwei Wang, 2022. "How Multidimensional Digital Empowerment Affects Technology Innovation Performance: The Moderating Effect of Adaptability to Technology Embedding," Sustainability, MDPI, vol. 14(23), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohit Singh & Weijun Xie, 2020. "Approximation Algorithms for D -optimal Design," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1512-1534, November.
    2. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    3. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    4. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    5. Guanyi Wang, 2024. "Robust Network Targeting with Multiple Nash Equilibria," Papers 2410.20860, arXiv.org, revised Nov 2024.
    6. Majun Shi & Zishen Yang & Wei Wang, 2023. "Greedy Guarantees for Non-submodular Function Maximization Under Independent System Constraint with Applications," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 516-543, February.
    7. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.
    8. Mohammad Abouei Mehrizi & Federico Corò & Emilio Cruciani & Gianlorenzo D’Angelo, 2022. "Election control through social influence with voters’ uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 635-669, August.
    9. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    10. Suning Gong & Qingqin Nong & Shuyu Bao & Qizhi Fang & Ding-Zhu Du, 2023. "A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice," Journal of Global Optimization, Springer, vol. 85(1), pages 15-38, January.
    11. Emily M. Craparo & Mumtaz Karatas & Tobias U. Kuhn, 2017. "Sensor placement in active multistatic sonar networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 287-304, June.
    12. Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.
    13. Oded Berman & Dmitry Krass & Mozart B. C. Menezes, 2007. "Facility Reliability Issues in Network p -Median Problems: Strategic Centralization and Co-Location Effects," Operations Research, INFORMS, vol. 55(2), pages 332-350, April.
    14. Hongjie Guo & Jianzhong Li & Hong Gao, 2022. "Data source selection for approximate query," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2443-2459, November.
    15. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    16. repec:dgr:rugsom:99a17 is not listed on IDEAS
    17. Klages-Mundt, Ariah & Minca, Andreea, 2022. "Optimal intervention in economic networks using influence maximization methods," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1136-1148.
    18. Xin Chen & Qingqin Nong & Yan Feng & Yongchang Cao & Suning Gong & Qizhi Fang & Ker-I Ko, 2017. "Centralized and decentralized rumor blocking problems," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 314-329, July.
    19. Lehmann, Daniel, 2020. "Quality of local equilibria in discrete exchange economies," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 141-152.
    20. Xin Sun & Gaidi Li & Yapu Zhang & Zhenning Zhang, 2022. "Private non-monotone submodular maximization," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3212-3232, December.
    21. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2017. "Formulations and Approximation Algorithms for Multilevel Uncapacitated Facility Location," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 767-779, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:29:y:2017:i:4:p:660-675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.