IDEAS home Printed from https://ideas.repec.org/a/inm/ordeca/v16y2019i1p46-66.html
   My bibliography  Save this article

Two-Stage Invest–Defend Game: Balancing Strategic and Operational Decisions

Author

Listed:
  • Abdolmajid Yolmeh

    (Industrial and Systems Engineering Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854)

  • Melike Baykal-Gürsoy

    (Industrial and Systems Engineering Department, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854; Center for Advanced Infrastucture and Transportation, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854; Rutgers Center for Operations Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854)

Abstract

Protecting infrastructures and their users against terrorist attacks involves making both strategic and operational decisions in an organization’s hierarchy. Although usually analyzed separately, these decisions influence each other. To study the combined effect of strategic and operational decisions, we present a game-theoretic, two-stage model between a defender and an attacker involving multiple target sites. In the first stage, the defender (attacker) makes a strategic decision of allocating investment resources to target sites to improve the defense (attack) capabilities. We consider two cases for investments in the first stage: (1) unconstrained and (2) budget-constrained models. The investment allocations for each target site determine its detection probability. In the second stage, the players make operational decisions of which target site to defend or to attack. We distinguish between two games that arise in the second stage: the maximal damage game and the infiltration/harassment game. We prove that the solution to each game under budget constraints is unique. In fact, when the second-stage game is of the infiltration/harassment type, the invest–defend game has a unique closed-form solution that is very intuitive. The results reveal that an increase in defense investments at a target site decreases the probability of both defending and attacking that target. However, an increase in attack investments increases the probability of both defending and attacking that target. Similarly, an increase in the defender’s (attacker’s) investment efficiency leads to a decrease (increase) in investments of both the defender and the attacker. Finally, the model is applied to real data to obtain the equilibrium investment and defense strategies. The results from real data demonstrate that the attacker’s penalty from a failed attack is an important factor in determining the defender’s optimal distribution of investments and defense probabilities. The defender’s second-stage defense decisions complement the first-stage investment decisions; that is, among target sites that receive little or zero investment, the most important one is covered with a relatively high defense probability in the second stage. Moreover, as the attacker’s budget increases, the defense investments shift from less important sites to more important ones.

Suggested Citation

  • Abdolmajid Yolmeh & Melike Baykal-Gürsoy, 2019. "Two-Stage Invest–Defend Game: Balancing Strategic and Operational Decisions," Decision Analysis, INFORMS, vol. 16(1), pages 46-66, March.
  • Handle: RePEc:inm:ordeca:v:16:y:2019:i:1:p:46-66
    DOI: 10.1287/deca.2018.0377
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/deca.2018.0377
    Download Restriction: no

    File URL: https://libkey.io/10.1287/deca.2018.0377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elisabeth Paté‐Cornell, 2002. "Fusion of Intelligence Information: A Bayesian Approach," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 445-454, June.
    2. Hausken, Kjell & Bier, Vicki M., 2011. "Defending against multiple different attackers," European Journal of Operational Research, Elsevier, vol. 211(2), pages 370-384, June.
    3. Gregory Levitin & Kjell Hausken, 2009. "Intelligence and Impact Contests in Systems with Fake Targets," Defense & Security Analysis, Taylor & Francis Journals, vol. 25(2), pages 157-173, June.
    4. Bernard Harris, 2004. "Mathematical Methods in Combatting Terrorism," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 985-988, August.
    5. Mohammad E. Nikoofal & Jun Zhuang, 2012. "Robust Allocation of a Defensive Budget Considering an Attacker's Private Information," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 930-943, May.
    6. Hausken, Kjell, 2010. "Defense and attack of complex and dependent systems," Reliability Engineering and System Safety, Elsevier, vol. 95(1), pages 29-42.
    7. Powell, Robert, 2007. "Allocating Defensive Resources with Private Information about Vulnerability," American Political Science Review, Cambridge University Press, vol. 101(4), pages 799-809, November.
    8. Chen Wang & Vicki M. Bier, 2011. "Target-Hardening Decisions Based on Uncertain Multiattribute Terrorist Utility," Decision Analysis, INFORMS, vol. 8(4), pages 286-302, December.
    9. Vicki M. Bier & Naraphorn Haphuriwat & Jaime Menoyo & Rae Zimmerman & Alison M. Culpen, 2008. "Optimal Resource Allocation for Defense of Targets Based on Differing Measures of Attractiveness," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 763-770, June.
    10. K Hausken & G Levitin, 2009. "Parallel systems with different types of defence resource expenditure under two sequential attacks," Journal of Risk and Reliability, , vol. 223(1), pages 71-85, March.
    11. Golany, Boaz & Kaplan, Edward H. & Marmur, Abraham & Rothblum, Uriel G., 2009. "Nature plays with dice - terrorists do not: Allocating resources to counter strategic versus probabilistic risks," European Journal of Operational Research, Elsevier, vol. 192(1), pages 198-208, January.
    12. Gregory Levitin & Kjell Hausken, 2012. "Resource Distribution in Multiple Attacks with Imperfect Detection of the Attack Outcome," Risk Analysis, John Wiley & Sons, vol. 32(2), pages 304-318, February.
    13. Peiqiu Guan & Meilin He & Jun Zhuang & Stephen C. Hora, 2017. "Modeling a Multitarget Attacker–Defender Game with Budget Constraints," Decision Analysis, INFORMS, vol. 14(2), pages 87-107, June.
    14. G Levitin & K Hausken, 2010. "Defence and attack of systems with variable attacker system structure detection probability," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 124-133, January.
    15. Levitin, Gregory & Hausken, Kjell, 2009. "Parallel systems under two sequential attacks," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 763-772.
    16. Levitin, Gregory & Hausken, Kjell, 2009. "Intelligence and impact contests in systems with redundancy, false targets, and partial protection," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1927-1941.
    17. Kjell Hausken & Fei He, 2016. "On the Effectiveness of Security Countermeasures for Critical Infrastructures," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 711-726, April.
    18. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    19. Stergios Skaperdas, 1996. "Contest success functions (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 283-290.
    20. G Levitin & K Hausken, 2012. "Parallel systems under two sequential attacks with imperfect detection of the first attack outcome," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(11), pages 1545-1555, November.
    21. Jun Zhuang & Vicki M. Bier, 2007. "Balancing Terrorism and Natural Disasters---Defensive Strategy with Endogenous Attacker Effort," Operations Research, INFORMS, vol. 55(5), pages 976-991, October.
    22. G Levitin & K Hausken, 2012. "Individual versus overarching protection against strategic attacks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(7), pages 969-981, July.
    23. Kjell Hausken, 2002. "Probabilistic Risk Analysis and Game Theory," Risk Analysis, John Wiley & Sons, vol. 22(1), pages 17-27, February.
    24. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    25. Naraphorn Haphuriwat & Vicki M. Bier & Henry H. Willis, 2011. "Deterring the Smuggling of Nuclear Weapons in Container Freight Through Detection and Retaliation," Decision Analysis, INFORMS, vol. 8(2), pages 88-102, June.
    26. Hausken, Kjell, 2006. "Income, interdependence, and substitution effects affecting incentives for security investment," Journal of Accounting and Public Policy, Elsevier, vol. 25(6), pages 629-665.
    27. William L. McGill & Bilal M. Ayyub & Mark Kaminskiy, 2007. "Risk Analysis for Critical Asset Protection," Risk Analysis, John Wiley & Sons, vol. 27(5), pages 1265-1281, October.
    28. Kjell Hausken & Vicki M. Bier & Jun Zhuang, 2009. "Defending Against Terrorism, Natural Disaster, and All Hazards," International Series in Operations Research & Management Science, in: Vicki M. M. Bier & M. Naceur Azaiez (ed.), Game Theoretic Risk Analysis of Security Threats, chapter 4, pages 65-97, Springer.
    29. Abdolmajid Yolmeh & Melike Baykal-Gürsoy, 2018. "Urban rail patrolling: a game theoretic approach," Journal of Transportation Security, Springer, vol. 11(1), pages 23-40, June.
    30. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola Dimitri, 2020. "Skills, Efficiency, and Timing in a Simple Attack and Defense Model," Decision Analysis, INFORMS, vol. 17(3), pages 227-234, September.
    2. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    3. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    2. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.
    3. Mohammad E. Nikoofal & Mehmet Gümüs, 2015. "On the value of terrorist’s private information in a government’s defensive resource allocation problem," IISE Transactions, Taylor & Francis Journals, vol. 47(6), pages 533-555, June.
    4. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    5. Shan, Xiaojun & Zhuang, Jun, 2018. "Modeling cumulative defensive resource allocation against a strategic attacker in a multi-period multi-target sequential game," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 12-26.
    6. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2022. "On the adoption of new technology to enhance counterterrorism measures: An attacker–defender game with risk preferences," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    7. Nikoofal, Mohammad E. & Zhuang, Jun, 2015. "On the value of exposure and secrecy of defense system: First-mover advantage vs. robustness," European Journal of Operational Research, Elsevier, vol. 246(1), pages 320-330.
    8. Chen, Shun & Zhao, Xudong & Chen, Zhilong & Hou, Benwei & Wu, Yipeng, 2022. "A game-theoretic method to optimize allocation of defensive resource to protect urban water treatment plants against physical attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    9. Zhiheng Xu & Jun Zhuang, 2019. "A Study on a Sequential One‐Defender‐N‐Attacker Game," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1414-1432, June.
    10. Peiqiu Guan & Jun Zhuang, 2016. "Modeling Resources Allocation in Attacker‐Defender Games with “Warm Up” CSF," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 776-791, April.
    11. Simon, Jay & Omar, Ayman, 2020. "Cybersecurity investments in the supply chain: Coordination and a strategic attacker," European Journal of Operational Research, Elsevier, vol. 282(1), pages 161-171.
    12. Xing Gao & Weijun Zhong & Shue Mei, 2013. "Information Security Investment When Hackers Disseminate Knowledge," Decision Analysis, INFORMS, vol. 10(4), pages 352-368, December.
    13. Di Wu & Xiangbin Yan & Rui Peng & Shaomin Wu, 2020. "Optimal defence-attack strategies between one defender and two attackers," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(11), pages 1830-1846, November.
    14. Mohammad Ebrahim Nikoofal & Morteza Pourakbar & Mehmet Gumus, 2023. "Securing containerized supply chain through public and private partnership," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2341-2361, July.
    15. Xiaojun (Gene) Shan & Jun Zhuang, 2014. "Modeling Credible Retaliation Threats in Deterring the Smuggling of Nuclear Weapons Using Partial Inspection---A Three-Stage Game," Decision Analysis, INFORMS, vol. 11(1), pages 43-62, March.
    16. Liang, Liang & Chen, Jingxian & Siqueira, Kevin, 2020. "Revenge or continued attack and defense in defender–attacker conflicts," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1180-1190.
    17. Rui Peng & Di Wu & Mengyao Sun & Shaomin Wu, 2021. "An attack-defense game on interdependent networks," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(10), pages 2331-2341, October.
    18. Ridwan Al Aziz & Meilin He & Jun Zhuang, 2020. "An Attacker–defender Resource Allocation Game with Substitution and Complementary Effects," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1481-1506, July.
    19. Abhra Roy & Jomon Paul, 2013. "Terrorism deterrence in a two country framework: strategic interactions between R&D, defense and pre-emption," Annals of Operations Research, Springer, vol. 211(1), pages 399-432, December.
    20. Xiaojun Shan & Jun Zhuang, 2013. "Cost of Equity in Homeland Security Resource Allocation in the Face of a Strategic Attacker," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1083-1099, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ordeca:v:16:y:2019:i:1:p:46-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.