IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i1p29-42.html
   My bibliography  Save this article

Defense and attack of complex and dependent systems

Author

Listed:
  • Hausken, Kjell

Abstract

A framework is constructed for how to analyze the strategic defense of an infrastructure subject to attack by a strategic attacker. Merging operations research, reliability theory, and game theory for optimal analytical impact, the optimization program for the defender and attacker is specified. Targets can be in parallel, series, combined series-parallel, complex, k-out-of-n redundancy, independent, interdependent, and dependent. The defender and attacker determine how much to invest in defending versus attacking each of multiple targets. A target can have economic, human, and symbolic values, subjectively assessed by the defender and attacker. A contest success function determines the probability of a successful attack on each target, dependent on the investments by the defender and attacker into each target, and on characteristics of the contest. The defender minimizes the expected damage plus the defense costs. The attacker maximizes the expected damage minus the attack costs. Each agent is concerned about how his investments vary across the targets, and the impact on his utilities. Interdependent systems are analyzed where the defense and attack on one target impacts all targets. Dependent systems are analyzed applying Markov analysis and repeated games where a successful attack on one target in the first period impacts the unit costs of defense and attack, and the contest intensity, for the other target in the second period.

Suggested Citation

  • Hausken, Kjell, 2010. "Defense and attack of complex and dependent systems," Reliability Engineering and System Safety, Elsevier, vol. 95(1), pages 29-42.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:1:p:29-42
    DOI: 10.1016/j.ress.2009.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832009001914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2009.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Drew Fudenberg & Jean Tirole, 1991. "Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061414, April.
    2. Patterson, S.A. & Apostolakis, G.E., 2007. "Identification of critical locations across multiple infrastructures for terrorist actions," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1183-1203.
    3. Powell, Robert, 2007. "Allocating Defensive Resources with Private Information about Vulnerability," American Political Science Review, Cambridge University Press, vol. 101(4), pages 799-809, November.
    4. Kunreuther, Howard & Heal, Geoffrey, 2003. "Interdependent Security," Journal of Risk and Uncertainty, Springer, vol. 26(2-3), pages 231-249, March-May.
    5. Seth D. Guikema, 2009. "Game Theory Models of Intelligent Actors in Reliability Analysis: An Overview of the State of the Art," International Series in Operations Research & Management Science, in: Vicki M. M. Bier & M. Naceur Azaiez (ed.), Game Theoretic Risk Analysis of Security Threats, chapter 2, pages 13-31, Springer.
    6. M. Naceur Azaiez, 2009. "A Bayesian Model for a Game of Information in Optimal Attack/Defense Strategies," International Series in Operations Research & Management Science, in: Vicki M. M. Bier & M. Naceur Azaiez (ed.), Game Theoretic Risk Analysis of Security Threats, chapter 5, pages 99-123, Springer.
    7. Azaiez, M.N. & Bier, Vicki M., 2007. "Optimal resource allocation for security in reliability systems," European Journal of Operational Research, Elsevier, vol. 181(2), pages 773-786, September.
    8. P. D. Gaver & D. Glazebrook & P. A. Jacobs, 2009. "Search for a Malevolent Needle in a Benign Haystack," International Series in Operations Research & Management Science, in: Vicki M. M. Bier & M. Naceur Azaiez (ed.), Game Theoretic Risk Analysis of Security Threats, chapter 6, pages 125-146, Springer.
    9. Hirshleifer, Jack, 1995. "Anarchy and Its Breakdown," Journal of Political Economy, University of Chicago Press, vol. 103(1), pages 26-52, February.
    10. Stergios Skaperdas, 1996. "Contest success functions (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 283-290.
    11. Gerald Brown & Matthew Carlyle & Javier Salmerón & Kevin Wood, 2006. "Defending Critical Infrastructure," Interfaces, INFORMS, vol. 36(6), pages 530-544, December.
    12. Jun Zhuang & Vicki M. Bier, 2007. "Balancing Terrorism and Natural Disasters---Defensive Strategy with Endogenous Attacker Effort," Operations Research, INFORMS, vol. 55(5), pages 976-991, October.
    13. Hausken, Kjell, 2006. "Income, interdependence, and substitution effects affecting incentives for security investment," Journal of Accounting and Public Policy, Elsevier, vol. 25(6), pages 629-665.
    14. Kjell Hausken & Vicki M. Bier & Jun Zhuang, 2009. "Defending Against Terrorism, Natural Disaster, and All Hazards," International Series in Operations Research & Management Science, in: Vicki M. M. Bier & M. Naceur Azaiez (ed.), Game Theoretic Risk Analysis of Security Threats, chapter 4, pages 65-97, Springer.
    15. Gregory Levitin, 2009. "Optimizing Defense Strategies for Complex Multi-State Systems," International Series in Operations Research & Management Science, in: Vicki M. M. Bier & M. Naceur Azaiez (ed.), Game Theoretic Risk Analysis of Security Threats, chapter 3, pages 33-64, Springer.
    16. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    2. Levitin, Gregory & Hausken, Kjell, 2010. "Separation in homogeneous systems with independent identical elements," European Journal of Operational Research, Elsevier, vol. 203(3), pages 625-634, June.
    3. Hausken, Kjell & Zhuang, Jun, 2013. "The impact of disaster on the strategic interaction between company and government," European Journal of Operational Research, Elsevier, vol. 225(2), pages 363-376.
    4. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    5. Kjell Hausken & Vicki M. Bier & Jun Zhuang, 2009. "Defending Against Terrorism, Natural Disaster, and All Hazards," International Series in Operations Research & Management Science, in: Vicki M. M. Bier & M. Naceur Azaiez (ed.), Game Theoretic Risk Analysis of Security Threats, chapter 4, pages 65-97, Springer.
    6. Kjell Hausken & Jun Zhuang, 2016. "The strategic interaction between a company and the government surrounding disasters," Annals of Operations Research, Springer, vol. 237(1), pages 27-40, February.
    7. Levitin, Gregory & Hausken, Kjell, 2009. "False targets efficiency in defense strategy," European Journal of Operational Research, Elsevier, vol. 194(1), pages 155-162, April.
    8. Hausken, Kjell, 2017. "Defense and attack for interdependent systems," European Journal of Operational Research, Elsevier, vol. 256(2), pages 582-591.
    9. Levitin, Gregory & Hausken, Kjell, 2009. "Meeting a demand vs. enhancing protections in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1711-1717.
    10. Kjell Hausken & Jun Zhuang, 2016. "How companies and governments react to disasters," Journal of Risk and Reliability, , vol. 230(4), pages 417-426, August.
    11. Bier, Vicki M. & Hausken, Kjell, 2013. "Defending and attacking a network of two arcs subject to traffic congestion," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 214-224.
    12. Hausken, Kjell, 2017. "Special versus general protection and attack of parallel and series components," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 239-256.
    13. Kjell Hausken, 2012. "Game Theoretic Analysis of Standby Systems," Chapters, in: Yair Holtzman (ed.), Advanced Topics in Applied Operations Management, IntechOpen.
    14. Levitin, Gregory & Hausken, Kjell, 2009. "Intelligence and impact contests in systems with redundancy, false targets, and partial protection," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1927-1941.
    15. Levitin, Gregory & Hausken, Kjell, 2008. "Protection vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1444-1451.
    16. Ben Yaghlane, Asma & Azaiez, M. Naceur, 2017. "Systems under attack-survivability rather than reliability: Concept, results, and applications," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1156-1164.
    17. Hausken, Kjell, 2008. "Strategic defense and attack for reliability systems," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1740-1750.
    18. Kjell Hausken & Gregory Levitin, 2008. "Efficiency of Even Separation of Parallel Elements with Variable Contest Intensity," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1477-1486, October.
    19. Levitin, Gregory & Hausken, Kjell, 2011. "Preventive strike vs. false targets and protection in defense strategy," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 912-924.
    20. Peiqiu Guan & Jun Zhuang, 2015. "Modeling Public–Private Partnerships in Disaster Management via Centralized and Decentralized Models," Decision Analysis, INFORMS, vol. 12(4), pages 173-189, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:1:p:29-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.