IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v14y2019i3p353-377.html
   My bibliography  Save this article

Costo de generación eléctrica incorporando externalidades ambientales: Mezcla óptima de tecnologías de carga base

Author

Listed:
  • María del Carmen Gómez-Ríos

    (Universidad Anáhuac México-Norte, México)

  • David Juárez-Luna

    (Universidad Anáhuac México-Norte, México)

Abstract

El objetivo de este artículo es calcular el Costo Total Nivelado de Generación con Externalidades (CTNGE) de tres tecnologías de carga base: termoeléctrica de carbón, ciclo combinado y central nuclear. Se emplea simulación Monte Carlo para estimar las densidades de probabilidad de los CTNGE. Se emplea la teoría de portafolio para encontrar la mezcla de tecnologías que brinden el CTNGE menos riesgoso y con menor media. Se encuentra que la central nuclear tiene los menores CTNGE. Siendo la termoeléctrica de carbón la tecnología con mayores y más riesgosos CTNGE. El análisis sugiere que, al generar electricidad, conviene dejar fuera a la termoeléctrica de carbón y centrarse en dos tecnologías: ciclo combinado y central nuclear, asignando a ésta última una mayor participación. Una limitante del trabajo es que las densidades de probabilidad de los CTNGE estimadas a través de la simulación Monte Carlo dependen de los datos empleados. El presente análisis sugiere que el CTNGE se puede modificar significativamente al incluir el costo del CO2.

Suggested Citation

  • María del Carmen Gómez-Ríos & David Juárez-Luna, 2019. "Costo de generación eléctrica incorporando externalidades ambientales: Mezcla óptima de tecnologías de carga base," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 14(3), pages 353-377, Julio - S.
  • Handle: RePEc:imx:journl:v:14:y:2019:i:3:p:353-377
    as

    Download full text from publisher

    File URL: http://www.remef.org.mx/index.php/remef/article/view/308
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fabien A. Roques & William J. Nuttall & David M. Newbery & Richard de Neufville & Stephen Connors, 2006. "Nuclear Power: A Hedge against Uncertain Gas and Carbon Prices?," The Energy Journal, , vol. 27(4), pages 1-24, October.
    2. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    3. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    5. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    6. Birgir Hrafnkelsson & Gudmundur V. Oddsson & Runar Unnthorsson, 2016. "A Method for Estimating Annual Energy Production Using Monte Carlo Wind Speed Simulation," Energies, MDPI, vol. 9(4), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuss, Sabine & Szolgayová, Jana & Khabarov, Nikolay & Obersteiner, Michael, 2012. "Renewables and climate change mitigation: Irreversible energy investment under uncertainty and portfolio effects," Energy Policy, Elsevier, vol. 40(C), pages 59-68.
    2. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    3. Kitzing, Lena, 2014. "Risk implications of renewable support instruments: Comparative analysis of feed-in tariffs and premiums using a mean–variance approach," Energy, Elsevier, vol. 64(C), pages 495-505.
    4. Madlener, Reinhard & Wenk, Christioph, 2008. "Efficient Investment Portfolios for the Swiss Electricity Supply Sector," FCN Working Papers 2/2008, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    5. Juárez-Luna, David, 2020. "Beneficios económicos y ambientales de la energía nuclear [Economic and environmental benefits of nuclear energy]," MPRA Paper 98790, University Library of Munich, Germany.
    6. Fabien A. Roques, 2011. "Long-term Contracts and Technology Choices in Electricity Markets," Chapters, in: Jean-Michel Glachant & Dominique Finon & Adrien de Hauteclocque (ed.), Competition, Contracts and Electricity Markets, chapter 2, Edward Elgar Publishing.
    7. Vithayasrichareon, Peerapat & Riesz, Jenny & MacGill, Iain F., 2015. "Using renewables to hedge against future electricity industry uncertainties—An Australian case study," Energy Policy, Elsevier, vol. 76(C), pages 43-56.
    8. Sunderkötter, Malte & Weber, Christoph, 2012. "Valuing fuel diversification in power generation capacity planning," Energy Economics, Elsevier, vol. 34(5), pages 1664-1674.
    9. Jano-Ito, Marco A. & Crawford-Brown, Douglas, 2017. "Investment decisions considering economic, environmental and social factors: An actors' perspective for the electricity sector of Mexico," Energy, Elsevier, vol. 121(C), pages 92-106.
    10. Kim, Yeong Jae & Cho, Seong-Hoon & Sharma, Bijay P., 2021. "Constructing efficient portfolios of low-carbon technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Daniel Ziegler & Katrin Schmitz & Christoph Weber, 2012. "Optimal electricity generation portfolios," Computational Management Science, Springer, vol. 9(3), pages 381-399, August.
    12. John Foster & Liam Wagner & Phil Wild & Junhua Zhao & Lucas Skoofa & Craig Froome, 2011. "Market and Economic Modelling of the Intelligent Grid: End of Year Report 2009," Energy Economics and Management Group Working Papers 09, School of Economics, University of Queensland, Australia.
    13. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    14. Allan, Grant & Eromenko, Igor & McGregor, Peter & Swales, Kim, 2011. "The regional electricity generation mix in Scotland: A portfolio selection approach incorporating marine technologies," Energy Policy, Elsevier, vol. 39(1), pages 6-22, January.
    15. Newbery, David, 2018. "Policies for decarbonizing a liberalized power sector," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-24.
    16. Westner, Günther & Madlener, Reinhard, 2011. "Development of cogeneration in Germany: A mean-variance portfolio analysis of individual technology’s prospects in view of the new regulatory framework," Energy, Elsevier, vol. 36(8), pages 5301-5313.
    17. David M. Newbery & David M. Reiner & Robert A. Ritz, 2018. "When is a carbon price floor desirable?," Working Papers EPRG 1816, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    18. Geoffrey Poitras & John Heaney, 2015. "Classical Ergodicity and Modern Portfolio Theory," Post-Print hal-03680380, HAL.
    19. van den Bergh, Jeroen C.J.M., 2008. "Optimal diversity: Increasing returns versus recombinant innovation," Journal of Economic Behavior & Organization, Elsevier, vol. 68(3-4), pages 565-580, December.
    20. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).

    More about this item

    Keywords

    Emisiones de CO2; Generación; Electricidad; Costos nivelados;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:14:y:2019:i:3:p:353-377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.