IDEAS home Printed from https://ideas.repec.org/a/rjr/romjef/vy2015i4p170-179.html
   My bibliography  Save this article

A Decision Support System to Predict Financial Distress. The Case Of Romania

Author

Listed:
  • Liviu Tudor

    (Ph.D. Student at The Bucharest University of Economic Studies)

  • Mădălina Ecaterina Popescu

    (The Bucharest University of Economic Studies and Scientific Researcher at the National Scientific Research Institute for Labour and Social Protection)

  • Marin Andreica

    (The Bucharest University of Economic Studies)

Abstract

Financial distress prediction has become a topic of great interest for most decision makers over the last decades, especially because of the valuable insights and effective early warnings of potential bankruptcy yielded by such prediction models. Therefore, discovering a suitable model for predicting financial distress is likely to be of great significance to global investors. Thus, this paper aims to offer a practical solution to predict financial distress in Romania by focusing on developing an integrated decision support system and on analysing the effectiveness of several prediction models based on decision trees, logit and hazard models, as well as neural networks.

Suggested Citation

  • Liviu Tudor & Mădălina Ecaterina Popescu & Marin Andreica, 2015. "A Decision Support System to Predict Financial Distress. The Case Of Romania," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 170-179, December.
  • Handle: RePEc:rjr:romjef:v::y:2015:i:4:p:170-179
    as

    Download full text from publisher

    File URL: http://www.ipe.ro/rjef/rjef4_15/rjef4_2015p170-179.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    2. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    3. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    4. Chae Woo Nam & Tong Suk Kim & Nam Jung Park & Hoe Kyung Lee, 2008. "Bankruptcy prediction using a discrete-time duration model incorporating temporal and macroeconomic dependencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 493-506.
    5. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Alejandro Fernández Fernández & Virginia Bejarano Vázquez & Juan Antonio Vicente Virseda, 2019. "Evaluación de riesgos con Data Mining: el sistema financiero español," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 14(3), pages 309-328, Julio - S.
    2. Dejan JOVANOVIĆ & Mirjana TODOROVIĆ & Milka GRBIĆ, 2017. "Financial Indicators As Predictors Of Illiquidity," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 128-149, March.
    3. Marin ANDREICA & Peter LANGER & Eugen ALBU & Paul LANGER, 2015. "Management Implications Of Implementation Of Danube Strategy In Refloating Of Ships," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 9(1), pages 97-104, November.
    4. Madalina Ecaterina POPESCU & Marin ANDREICA & Ion-Petru POPESCU, 2017. "Decision Support Solution To Business Failure Prediction," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 11(1), pages 99-106, November.
    5. repec:prg:jnlpep:v:preprint:id:664:p:1-17 is not listed on IDEAS
    6. Madalina Ecaterina Popescu & Victor Dragotă, 2018. "What Do Post-Communist Countries Have in Common When Predicting Financial Distress?," Prague Economic Papers, Prague University of Economics and Business, vol. 2018(6), pages 637-653.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
    2. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    3. Ilyes Abid & Farid Mkaouar & Olfa Kaabia, 2018. "Dynamic analysis of the forecasting bankruptcy under presence of unobserved heterogeneity," Annals of Operations Research, Springer, vol. 262(2), pages 241-256, March.
    4. Arvind Shrivastava & Kuldeep Kumar & Nitin Kumar, 2018. "Business Distress Prediction Using Bayesian Logistic Model for Indian Firms," Risks, MDPI, vol. 6(4), pages 1-15, October.
    5. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    6. Jairaj Gupta & Andros Gregoriou & Jerome Healy, 2015. "Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter?," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 845-869, November.
    7. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    8. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    9. Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2020. "Corporate Default Predictions Using Machine Learning: Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    10. Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2022. "Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1231-1249, March.
    11. Han Chulwoo & Kang Hyeongmook & Kim Gamin & Yi Joseph, 2012. "Logit Regression Based Bankruptcy Prediction of Korean Firms," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 7(1), pages 1-28, December.
    12. Mãdãlina Ecaterina POPESCU, 2015. "Proposal for a Decision Support System to Predict Financial Distress," REVISTA DE MANAGEMENT COMPARAT INTERNATIONAL/REVIEW OF INTERNATIONAL COMPARATIVE MANAGEMENT, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 16(1), pages 112-118, March.
    13. Ashraf, Sumaira & Félix, Elisabete G.S. & Serrasqueiro, Zélia, 2020. "Development and testing of an augmented distress prediction model: A comparative study on a developed and an emerging market," Journal of Multinational Financial Management, Elsevier, vol. 57.
    14. Denissa Satriavi, 2011. "Comparison Of Predicting Financial Distress Using Hazard Model Without And Incorporating Macroeconomic Variable As Baseline Hazard Rate," Working Papers in Business, Management and Finance 201105, Department of Management and Business, Padjadjaran University, revised Dec 2011.
    15. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    16. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
    17. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
    18. Sun, Lili & Shenoy, Prakash P., 2007. "Using Bayesian networks for bankruptcy prediction: Some methodological issues," European Journal of Operational Research, Elsevier, vol. 180(2), pages 738-753, July.
    19. Alam, Nurul & Gao, Junbin & Jones, Stewart, 2021. "Corporate failure prediction: An evaluation of deep learning vs discrete hazard models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    20. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.

    More about this item

    Keywords

    financial distress; decision support system; decision tree; logit and hazard model; neural networks;
    All these keywords.

    JEL classification:

    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rjr:romjef:v::y:2015:i:4:p:170-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Corina Saman (email available below). General contact details of provider: https://edirc.repec.org/data/ipacaro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.