IDEAS home Printed from https://ideas.repec.org/a/igg/jrqeh0/v11y2022i1p1-9.html
   My bibliography  Save this article

Assessing the Early Stage of eHealth Adoption: A Case Study From a Community Hospital in Thailand

Author

Listed:
  • Noppon Choosri

    (Chiang Mai University, Thailand)

  • Waritsara Jitmun

    (Chiang Mai University, Thailand)

  • Pathathai Na Lumpoon

    (Chiang Mai University, Thailand)

  • Supavas Sitthithanasakul

    (Chiang Mai University, Thailand)

  • Sompob Saralamba

    (Mahidol University, Thailand)

  • Krid Thongbunjob

    (Kohka Hospital, Thailand)

  • Pongsatorn Chumsang

    (Kohka Hospital, Thailand)

Abstract

In this paper, the authors implement and determine the success the eHealth adoption for queue management when it was first deployed for a community hospital setting in Thailand. The electronic queue system was first implemented to improve conventional operations; then extensive evaluations were conducted to measure the effectiveness for each stakeholder. The healthcare staff shared a common perception that the new system could reduce their workload and increase the efficacy of queue fairness. The overall patient satisfaction and actual waiting time patients spent at the nurse interview station improved significantly. The majority of the patients agreed that the notification for attention from the computerized system is more effective. The community healthcare has strong potential to adopt the eHealth system. Being more automated enabled a reduced burden of administration jobs and significantly reduced waiting times for patients. Patients responded that they had greater satisfaction after the introduction of the electronic queue system.

Suggested Citation

  • Noppon Choosri & Waritsara Jitmun & Pathathai Na Lumpoon & Supavas Sitthithanasakul & Sompob Saralamba & Krid Thongbunjob & Pongsatorn Chumsang, 2022. "Assessing the Early Stage of eHealth Adoption: A Case Study From a Community Hospital in Thailand," International Journal of Reliable and Quality E-Healthcare (IJRQEH), IGI Global, vol. 11(1), pages 1-9, January.
  • Handle: RePEc:igg:jrqeh0:v:11:y:2022:i:1:p:1-9
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJRQEH.309992
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leeflang, P.S.H. & Wittink, Dick R., 2000. "Building models for marketing decisions: past, present and future," Research Report 00F20, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    2. repec:dgr:rugsom:00f20 is not listed on IDEAS
    3. Wang, Yichuan & Kung, LeeAnn & Byrd, Terry Anthony, 2018. "Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 3-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariani, Marcello M. & Fosso Wamba, Samuel, 2020. "Exploring how consumer goods companies innovate in the digital age: The role of big data analytics companies," Journal of Business Research, Elsevier, vol. 121(C), pages 338-352.
    2. Risselada, Hans & Verhoef, Peter C. & Bijmolt, Tammo H.A., 2010. "Staying Power of Churn Prediction Models," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 198-208.
    3. Basile, Luigi Jesus & Carbonara, Nunzia & Pellegrino, Roberta & Panniello, Umberto, 2023. "Business intelligence in the healthcare industry: The utilization of a data-driven approach to support clinical decision making," Technovation, Elsevier, vol. 120(C).
    4. Miraç Fatih İLGÜN, 2020. "Industry 4.0 and Transformation in Public Finance: An Assessment by Government Expenditures," Sosyoekonomi Journal, Sosyoekonomi Society, issue 28(44).
    5. Nguyen Dang Tuan, Minh & Nguyen Thanh, Nhan & Le Tuan, Loc, 2019. "Applying a mindfulness-based reliability strategy to the Internet of Things in healthcare – A business model in the Vietnamese market," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 54-68.
    6. Yu, Wantao & Zhao, Gen & Liu, Qi & Song, Yongtao, 2021. "Role of big data analytics capability in developing integrated hospital supply chains and operational flexibility: An organizational information processing theory perspective," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    7. Jiang, Syuan-Yi, 2022. "Transition and innovation ecosystem – investigating technologies, focal actors, and institution in eHealth innovations," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    8. Wiesel, Thorsten & Skiera, Bernd & Villanueva, Julian, 2011. "Customer Lifetime Value and Customer Equity Models Using Company-reported Summary Data," Journal of Interactive Marketing, Elsevier, vol. 25(1), pages 20-22.
    9. Brewis, Claire & Dibb, Sally & Meadows, Maureen, 2023. "Leveraging big data for strategic marketing: A dynamic capabilities model for incumbent firms," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    10. Khaled Naser Yousef Magableh & Selvi Kannan & Aladeen Yousef Rashid Hmoud, 2024. "Innovation Business Model: Adoption of Blockchain Technology and Big Data Analytics," Sustainability, MDPI, vol. 16(14), pages 1-25, July.
    11. Albers, Sönke, 2012. "Optimizable and implementable aggregate response modeling for marketing decision support," International Journal of Research in Marketing, Elsevier, vol. 29(2), pages 111-122.
    12. Marusia Ivanova, 2007. "Genesis and Evolution of Market Share Predictive Models," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 2, pages 117-148.
    13. Horváth, Csilla & Wieringa, Jaap E., 2003. "Combining time series and cross sectional data for the analysis of dynamic marketing systems," Research Report 03F13, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    14. Frethey-Bentham, Catherine, 2011. "Pseudo panels as an alternative study design," Australasian marketing journal, Elsevier, vol. 19(4), pages 281-292.
    15. Schulz, Petra & Shehu, Edlira & Clement, Michel, 2019. "When consumers can return digital products: Influence of firm- and consumer-induced communication on the returns and profitability of news articles," International Journal of Research in Marketing, Elsevier, vol. 36(3), pages 454-470.
    16. Hein, Maren & Goeken, Nils & Kurz, Peter & Steiner, Winfried J., 2022. "Using Hierarchical Bayes draws for improving shares of choice predictions in conjoint simulations: A study based on conjoint choice data," European Journal of Operational Research, Elsevier, vol. 297(2), pages 630-651.
    17. Agrawal, Smita & Patel, Atul, 2021. "SAG Cluster: An unsupervised graph clustering based on collaborative similarity for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    18. Rubbio, Iacopo & Bruccoleri, Manfredi, 2023. "Unfolding the relationship between digital health and patient safety: The roles of absorptive capacity and healthcare resilience," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    19. Brem, Alexander & Viardot, Eric & Nylund, Petra A., 2021. "Implications of the coronavirus (COVID-19) outbreak for innovation: Which technologies will improve our lives?," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    20. Inam ul Haq & Sofia Anwar & Abdul Quddoos & Faraz Riaz, 2022. "Estimation of Digital Transformation in South Asian Economies: An Application of Broad-Spectrum Approach," Journal of Economic Impact, Science Impact Publishers, vol. 4(3), pages 152-160.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jrqeh0:v:11:y:2022:i:1:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.