IDEAS home Printed from https://ideas.repec.org/p/gro/rugsom/03f13.html
   My bibliography  Save this paper

Combining time series and cross sectional data for the analysis of dynamic marketing systems

Author

Listed:
  • Horváth, Csilla
  • Wieringa, Jaap E.

    (Groningen University)

Abstract

Vector AutoRegressive (VAR) models have become popular in analyzing the behavior of competitive marketing systems. However, an important drawback of VAR models is that the number of parameters to be estimated can become very large. This may cause estimation problems, due to a lack of degrees of freedom. In this paper, we consider a solution to these problems. Instead of using a single time series, we develop pooled models that combine time series data for multiple units (e.g. stores). These approaches increase the number of available observations to a great extent and thereby the efciency of the parameter estimates. We present a small simulation study that demonstrates this gain in efficiency. An important issue in estimating pooled dynamic models is the heterogeneity among cross sections, since the mean parameter estimates that are obtained by pooling heterogenous cross sections may be biased. In order to avoid these biases, the model should accommodate a sufficient degree of heterogeneity. At the same time, a model that needlessly allows for heterogeneity requires the estimation of extra parameters and hence, reduces efciency of the parameter estimates. So, a thorough investigation of heterogeneity should precede the choice of the nal model. We discuss pooling approaches that accommodate for parameter heterogeneity in different ways and we introduce several tests for investigating cross-sectional heterogeneity that may facilitate this choice. We provide an empirical application using data of the Chicago market of the three largest national brands in the U.S. in the 6.5 oz. tuna sh product category. We determine the appropriate level of pooling and calibrate the pooled VAR model using these data.

Suggested Citation

  • Horváth, Csilla & Wieringa, Jaap E., 2003. "Combining time series and cross sectional data for the analysis of dynamic marketing systems," Research Report 03F13, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
  • Handle: RePEc:gro:rugsom:03f13
    as

    Download full text from publisher

    File URL: http://irs.ub.rug.nl/ppn/248290940
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Dekimpe, Marnik & Hanssens, Dominique M. & Silva-Risso, Jorge M., 1998. "Long-run effects of price promotions in scanner markets," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 269-291, November.
    2. Horváth, Csilla & Kornelis, Marcel & Leeflang, Peter S.H., 2002. "What marketing scholars should know about time series analysis : time series applications in marketing," Research Report 02F17, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    3. Beck, Nathaniel & Katz, Jonathan N., 1995. "What To Do (and Not to Do) with Time-Series Cross-Section Data," American Political Science Review, Cambridge University Press, vol. 89(3), pages 634-647, September.
    4. Leeflang, P.S.H. & Wittink, Dick R., 2000. "Building models for marketing decisions: past, present and future," Research Report 00F20, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    5. repec:dgr:rugsom:02f17 is not listed on IDEAS
    6. Benkwitz, Alexander & Lütkepohl, Helmut & Wolters, Jürgen, 2001. "Comparison Of Bootstrap Confidence Intervals For Impulse Responses Of German Monetary Systems," Macroeconomic Dynamics, Cambridge University Press, vol. 5(1), pages 81-100, February.
    7. repec:dgr:rugsom:00f20 is not listed on IDEAS
    8. Baltagi, Badi H. & Hidalgo, Javier & Li, Qi, 1996. "A nonparametric test for poolability using panel data," Journal of Econometrics, Elsevier, vol. 75(2), pages 345-367, December.
    9. Canova, Fabio & Ciccarelli, Matteo, 2004. "Forecasting and turning point predictions in a Bayesian panel VAR model," Journal of Econometrics, Elsevier, vol. 120(2), pages 327-359, June.
    10. Venkatram Ramaswamy & Wayne S. Desarbo & David J. Reibstein & William T. Robinson, 1993. "An Empirical Pooling Approach for Estimating Marketing Mix Elasticities with PIMS Data," Marketing Science, INFORMS, vol. 12(1), pages 103-124.
    11. Carol Scotese Lehr, 1999. "Banking on fewer children: Financial intermediation, fertility and economic development," Journal of Population Economics, Springer;European Society for Population Economics, vol. 12(4), pages 567-590.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koen Pauwels & Imran Currim & Marnik Dekimpe & Dominique Hanssens & Natalie Mizik & Eric Ghysels & Prasad Naik, 2004. "Modeling Marketing Dynamics by Time Series Econometrics," Marketing Letters, Springer, vol. 15(4), pages 167-183, December.
    2. Wieringa, Jaap E. & Horvath, Csilla, 2005. "Computing level-impulse responses of log-specified VAR systems," International Journal of Forecasting, Elsevier, vol. 21(2), pages 279-289.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Risselada, Hans & Verhoef, Peter C. & Bijmolt, Tammo H.A., 2010. "Staying Power of Churn Prediction Models," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 198-208.
    2. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Meghamrita Chakraborty, 2023. "Linking Migration, Diversity and Regional Development in India," Journal of Development Policy and Practice, , vol. 8(1), pages 55-72, January.
    4. Putsis, William Jr. & Dhar, Ravi, 2001. "An empirical analysis of the determinants of category expenditure," Journal of Business Research, Elsevier, vol. 52(3), pages 277-291, June.
    5. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    6. Meng, Chang & Ghafoori, Noorulhaq, 2024. "The economic impact of terrorism in South Asia," Socio-Economic Planning Sciences, Elsevier, vol. 96(C).
    7. Paolo Di Caro & Roberta Arbolino & Ugo Marani, 2018. "A note on the effects of human capital policies in Italy during the Great Recession," Economics Bulletin, AccessEcon, vol. 38(3), pages 1302-1312.
    8. Mattos, Enlinson & Rocha, Fabiana & Toporcov, Patricia, 2013. "Programas de incentivos fiscais são eficazes? Evidência a partir da avaliação do impacto do programa nota fiscal paulista sobre a arrecadação de ICMS," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.
    9. Bruno Amable & Donatella Gatti & Jan Schumacher, 2006. "Welfare-State Retrenchment: The Partisan Effect Revisited," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 22(3), pages 426-444, Autumn.
    10. Krause, Werner & Giebler, Heiko, 2020. "Shifting Welfare Policy Positions: The Impact of Radical Right Populist Party Success Beyond Migration Politics," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 56(3), pages 331-348.
    11. Germa Bel & Xavier Fageda, 2009. "Preventing competition because of 'solidarity': rhetoric and reality of airport investments in Spain," Applied Economics, Taylor & Francis Journals, vol. 41(22), pages 2853-2865.
    12. Fertő, Imre, 2013. "Intra-industry trade for agri-food products in the enlarged European Union," 87th Annual Conference, April 8-10, 2013, Warwick University, Coventry, UK 158846, Agricultural Economics Society.
    13. Farla, Kristine, 2012. "Institutions and credit," MERIT Working Papers 2012-038, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    14. Tobias Böhmelt & Jürg Vollenweider, 2015. "Information flows and social capital through linkages: the effectiveness of the CLRTAP network," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 15(2), pages 105-123, May.
    15. Subramanian Rangan & Metin Sengul, 2009. "Information technology and transnational integration: Theory and evidence on the evolution of the modern multinational enterprise," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 40(9), pages 1496-1514, December.
    16. Cohen, Joseph N, 2010. "Neoliberalism’s relationship with economic growth in the developing world: Was it the power of the market or the resolution of financial crisis?," MPRA Paper 24527, University Library of Munich, Germany.
    17. Lucas Bretschger, 2003. "Growth in a Globalised Economy: The Effects of Capital Taxes and Tax Competition," CER-ETH Economics working paper series 03/24, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    18. William R. Thompson & Richard Tucker, 1997. "Bewitched, Bothered, and Bewildered," Journal of Conflict Resolution, Peace Science Society (International), vol. 41(3), pages 462-477, June.
    19. repec:fgv:epgrbe:v:67:n:1:a:5 is not listed on IDEAS
    20. Alexander Chudik & Roland Straub, 2017. "Size, Openness, And Macroeconomic Interdependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(1), pages 33-55, February.
    21. Piotr Dybka & Bartosz Olesiński & Marek Rozkrut & Andrzej Torój, 2023. "Measuring the model uncertainty of shadow economy estimates," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 30(4), pages 1069-1106, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gro:rugsom:03f13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hanneke Tamling (email available below). General contact details of provider: https://edirc.repec.org/data/ferugnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.