Forecasting of Electricity Demand by Hybrid ANN-PSO Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
- Westoby, Richard & Pearce, David, 1984. "Single Equation Models for the Projection of Energy Demand in the United Kingdom, 1954-80," Scottish Journal of Political Economy, Scottish Economic Society, vol. 31(3), pages 229-254, November.
- Ünler, Alper, 2008. "Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025," Energy Policy, Elsevier, vol. 36(6), pages 1937-1944, June.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
- Zhu, Suling & Wang, Jianzhou & Zhao, Weigang & Wang, Jujie, 2011. "A seasonal hybrid procedure for electricity demand forecasting in China," Applied Energy, Elsevier, vol. 88(11), pages 3807-3815.
- Harvey, Andrew, 1997. "Trends, Cycles and Autoregressions," Economic Journal, Royal Economic Society, vol. 107(440), pages 192-201, January.
- Bhattacharyya, Subhes C. & Timilsina, Govinda R., 2009. "Energy demand models for policy formulation : a comparative study of energy demand models," Policy Research Working Paper Series 4866, The World Bank.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chaturvedi, Shobhit & Rajasekar, Elangovan & Natarajan, Sukumar & McCullen, Nick, 2022. "A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India," Energy Policy, Elsevier, vol. 168(C).
- Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
- Han, Meng & Ding, Lili & Zhao, Xin & Kang, Wanglin, 2019. "Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors," Energy, Elsevier, vol. 171(C), pages 69-76.
- Yeqi An & Yulin Zhou & Rongrong Li, 2019. "Forecasting India’s Electricity Demand Using a Range of Probabilistic Methods," Energies, MDPI, vol. 12(13), pages 1-24, July.
- Aneeque A. Mir & Mohammed Alghassab & Kafait Ullah & Zafar A. Khan & Yuehong Lu & Muhammad Imran, 2020. "A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons," Sustainability, MDPI, vol. 12(15), pages 1-35, July.
- Ozgur Kisi & Armin Azad & Hamed Kashi & Amir Saeedian & Seyed Ali Asghar Hashemi & Salar Ghorbani, 2019. "Modeling Groundwater Quality Parameters Using Hybrid Neuro-Fuzzy Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 847-861, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
- Parajuli, Ranjan & Østergaard, Poul Alberg & Dalgaard, Tommy & Pokharel, Govind Raj, 2014. "Energy consumption projection of Nepal: An econometric approach," Renewable Energy, Elsevier, vol. 63(C), pages 432-444.
- Jobling, Andrew & Jamasb, Tooraj, 2017.
"Price volatility and demand for oil: A comparative analysis of developed and developing countries,"
Economic Analysis and Policy, Elsevier, vol. 53(C), pages 96-113.
- Andrew Jobling & Tooraj Jamasb, 2015. "Price Volatility and Demand for Oil: A Comparative Analysis of Developed and Developing Countries," Working Papers EPRG 1507, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Andrew Jobling & Tooraj Jamasb, 2015. "Price Volatility and Demand for Oil: A Comparative Analysis of Developed and Developing Countries," Cambridge Working Papers in Economics 1512, Faculty of Economics, University of Cambridge.
- Zeng, Yu-Rong & Zeng, Yi & Choi, Beomjin & Wang, Lin, 2017. "Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network," Energy, Elsevier, vol. 127(C), pages 381-396.
- Safari, Ali & Davallou, Maryam, 2018. "Oil price forecasting using a hybrid model," Energy, Elsevier, vol. 148(C), pages 49-58.
- Sahraei, Mohammad Ali & Çodur, Merve Kayaci, 2022. "Prediction of transportation energy demand by novel hybrid meta-heuristic ANN," Energy, Elsevier, vol. 249(C).
- Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
- Maria Jesus Herrerias and Eric Girardin, 2013.
"Seasonal Patterns of Energy in China,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
- Maria J. Herrerias & Eric Girardin, 2013. "Seasonal Patterns of Energy in China," Post-Print hal-01499617, HAL.
- Javid, Muhammad & Khan, Farzana Naheed & Arif, Umaima, 2022. "Income and price elasticities of natural gas demand in Pakistan: A disaggregated analysis," Energy Economics, Elsevier, vol. 113(C).
- Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
- Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
- Chahkoutahi, Fatemeh & Khashei, Mehdi, 2017. "A seasonal direct optimal hybrid model of computational intelligence and soft computing techniques for electricity load forecasting," Energy, Elsevier, vol. 140(P1), pages 988-1004.
- Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
- Balkin, Sandy, 2001. "On Forecasting Exchange Rates Using Neural Networks: P.H. Franses and P.V. Homelen, 1998, Applied Financial Economics, 8, 589-596," International Journal of Forecasting, Elsevier, vol. 17(1), pages 139-140.
- Azevedo, I. & Leal, V., 2021. "A new model for ex-post quantification of the effects of local actions for climate change mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
- Daniel Buncic, 2012.
"Understanding forecast failure of ESTAR models of real exchange rates,"
Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
- Daniel Buncic, 2009. "Understanding forecast failure of ESTAR models of real exchange rates," EERI Research Paper Series EERI_RP_2009_18, Economics and Econometrics Research Institute (EERI), Brussels.
- Buncic, Daniel, 2009. "Understanding forecast failure in ESTAR models of real exchange rates," MPRA Paper 13121, University Library of Munich, Germany.
- Buncic, Daniel, 2009. "Understanding forecast failure of ESTAR models of real exchange rates," MPRA Paper 16526, University Library of Munich, Germany.
- Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
- Joël Cariolle & Michaël Goujon, 2015.
"Measuring Macroeconomic Instability: A Critical Survey Illustrated With Exports Series,"
Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 1-26, February.
- Joel Cariolle & Michaël Goujon, 2015. "Measuring macroeconomic instability: a critical survey illustrated with exports series," Post-Print halshs-01273229, HAL.
- Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jeoe00:v:6:y:2017:i:4:p:66-83. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.