IDEAS home Printed from https://ideas.repec.org/a/igg/jamc00/v13y2022i1p1-39.html
   My bibliography  Save this article

Alternated Superior Chaotic Biogeography-Based Algorithm for Optimization Problems

Author

Listed:
  • Deepak Kumar

    (Central University of Rajasthan, India)

  • Mamta Rani

    (Central University of Rajasthan, India)

Abstract

In this study, we consider a switching strategy that yields a stable desirable dynamic behaviour when it is applied alternatively between two undesirable dynamical systems. From the last few years, dynamical systems employed “chaos1 + chaos2 = order” and “order1 + order2 = chaos” (vice-versa) to control and anti control of chaotic situations. To find parameter values for these kind of alternating situations, comparison is being made between bifurcation diagrams of a map and its alternate version, which, on their own, means independent of one another, yield chaotic orbits. However, the parameter values yield a stable periodic orbit, when alternating strategy is employed upon them. It is interesting to note that we look for stabilization of chaotic trajectories in nonlinear dynamics, with the assumption that such chaotic behaviour is not desirable for a particular situation. The method described in this paper is based on the Parrondo’s paradox, where two losing games can be alternated, yielding a winning game, in a superior orbit.

Suggested Citation

  • Deepak Kumar & Mamta Rani, 2022. "Alternated Superior Chaotic Biogeography-Based Algorithm for Optimization Problems," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 13(1), pages 1-39, January.
  • Handle: RePEc:igg:jamc00:v:13:y:2022:i:1:p:1-39
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAMC.292520
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Negi, Ashish & Rani, Mamta & Mahanti, P.K., 2008. "Computer simulation of the behaviour of Julia sets using switching processes," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1187-1192.
    2. Yang, Dixiong & Li, Gang & Cheng, Gengdong, 2007. "On the efficiency of chaos optimization algorithms for global optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1366-1375.
    3. Law Kumar Singh & Pooja & Hitendra Garg & Munish Khanna, 2021. "An Artificial Intelligence-Based Smart System for Early Glaucoma Recognition Using OCT Images," International Journal of E-Health and Medical Communications (IJEHMC), IGI Global, vol. 12(4), pages 32-59, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yeong-Jeu, 2009. "An exponential observer for the generalized Rossler chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2457-2461.
    2. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    3. Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
    4. Imene Khenissi & Tawfik Guesmi & Ismail Marouani & Badr M. Alshammari & Khalid Alqunun & Saleh Albadran & Salem Rahmani & Rafik Neji, 2023. "Energy Management Strategy for Optimal Sizing and Siting of PVDG-BES Systems under Fixed and Intermittent Load Consumption Profile," Sustainability, MDPI, vol. 15(2), pages 1-28, January.
    5. Coelho, Leandro dos Santos, 2009. "Reliability–redundancy optimization by means of a chaotic differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 594-602.
    6. Salil Bharany & Sandeep Sharma & Surbhi Bhatia & Mohammad Khalid Imam Rahmani & Mohammed Shuaib & Saima Anwar Lashari, 2022. "Energy Efficient Clustering Protocol for FANETS Using Moth Flame Optimization," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    7. Sultan Almotairi & Elsayed Badr & Mustafa Abdul Salam & Alshimaa Dawood, 2023. "Three Chaotic Strategies for Enhancing the Self-Adaptive Harris Hawk Optimization Algorithm for Global Optimization," Mathematics, MDPI, vol. 11(19), pages 1-27, October.
    8. Cheng, Shen & Zhao, Gaiju & Gao, Ming & Shi, Yuetao & Huang, Mingming & Yousefi, Nasser, 2021. "Optimal hybrid energy system for locomotive utilizing improved Locust Swarm optimizer," Energy, Elsevier, vol. 218(C).
    9. Lateef Olakunle Jolaoso & Safeer Hussain Khan, 2020. "Some Escape Time Results for General Complex Polynomials and Biomorphs Generation by a New Iteration Process," Mathematics, MDPI, vol. 8(12), pages 1-18, December.
    10. Martin Ćalasan & Dražen Jovanović & Vesna Rubežić & Saša Mujović & Slobodan Đukanović, 2019. "Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach," Energies, MDPI, vol. 12(21), pages 1-14, November.
    11. El-Shorbagy, M.A. & Mousa, A.A. & Nasr, S.M., 2016. "A chaos-based evolutionary algorithm for general nonlinear programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 8-21.
    12. Hossein Lotfi, 2022. "A Multiobjective Evolutionary Approach for Solving the Multi-Area Dynamic Economic Emission Dispatch Problem Considering Reliability Concerns," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    13. Rani, Mamta & Agarwal, Rashi, 2009. "A new experimental approach to study the stability of logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2062-2066.
    14. Naanaa, Anis, 2015. "Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 402-411.
    15. Hamza Mohammed Ridha Al-Khafaji, 2022. "Improving Quality Indicators of the Cloud-Based IoT Networks Using an Improved Form of Seagull Optimization Algorithm," Future Internet, MDPI, vol. 14(10), pages 1-13, September.
    16. Li, Huan & Li, Kun & Zafetti, Nicholas & Gu, Jianfeng, 2020. "Improvement of energy supply configuration for telecommunication system in remote area s based on improved chaotic world cup optimization algorithm," Energy, Elsevier, vol. 192(C).
    17. Rani, Mamta & Agarwal, Rashi, 2009. "Generation of fractals from complex logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 447-452.
    18. He, Yao-Yao & Zhou, Jian-Zhong & Xiang, Xiu-Qiao & Chen, Heng & Qin, Hui, 2009. "Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3169-3176.
    19. He, Bohao & Jia, Biying & Zhao, Yanghe & Wang, Xu & Wei, Mao & Dietzel, Ranae, 2022. "Estimate soil moisture of maize by combining support vector machine and chaotic whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 267(C).
    20. Ren, Xiaojun & Wu, Yongtang & Hao, Dongmin & Liu, Guoxu & Zafetti, Nicholas, 2021. "Analysis of the performance of the multi-objective hybrid hydropower-photovoltaic-wind system to reduce variance and maximum power generation by developed owl search algorithm," Energy, Elsevier, vol. 231(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jamc00:v:13:y:2022:i:1:p:1-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.