IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i19p4181-d1254444.html
   My bibliography  Save this article

Three Chaotic Strategies for Enhancing the Self-Adaptive Harris Hawk Optimization Algorithm for Global Optimization

Author

Listed:
  • Sultan Almotairi

    (Department of Computer Science, College of Computer and Information Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
    Department of Computer Science, Faculty of Computer and Information Systems, Islamic University of Madinah, Medinah 42351, Saudi Arabia)

  • Elsayed Badr

    (Scientific Computing Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha 13518, Egypt
    Data Science Department, Faculty of Computers and Information Systems, Egyptian Chinese University, Cairo 11786, Egypt)

  • Mustafa Abdul Salam

    (Artificial Intelligence Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha 13518, Egypt
    Faculty of Computer Studies, Arab Open University, Cairo 11211, Egypt)

  • Alshimaa Dawood

    (Scientific Computing Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha 13518, Egypt)

Abstract

Harris Hawk Optimization (HHO) is a well-known nature-inspired metaheuristic model inspired by the distinctive foraging strategy and cooperative behavior of Harris Hawks. As with numerous other algorithms, HHO is susceptible to getting stuck in local optima and has a sluggish convergence rate. Several techniques have been proposed in the literature to improve the performance of metaheuristic algorithms (MAs) and to tackle their limitations. Chaos optimization strategies have been proposed for many years to enhance MAs. There are four distinct categories of Chaos strategies, including chaotic mapped initialization, randomness, iterations, and controlled parameters. This paper introduces SHHOIRC, a novel hybrid algorithm designed to enhance the efficiency of HHO. Self-adaptive Harris Hawk Optimization using three chaotic optimization methods (SHHOIRC) is the proposed algorithm. On 16 well-known benchmark functions, the proposed hybrid algorithm, authentic HHO, and five HHO variants are evaluated. The computational results and statistical analysis demonstrate that SHHOIRC exhibits notable similarities to other previously published algorithms. The proposed algorithm outperformed the other algorithms by 81.25%, compared to 18.75% for the prior algorithms, by obtaining the best average solutions for 13 benchmark functions. Furthermore, the proposed algorithm is tested on a real-life problem, which is the maximum coverage problem of Wireless Sensor Networks (WSNs), and compared with pure HHO, and two well-known algorithms, Grey Wolf Optimization (GWO) and Whale Optimization Algorithm (WOA). For the maximum coverage experiments, the proposed algorithm demonstrated superior performance, surpassing other algorithms by obtaining the best coverage rates of 95.4375% and 97.125% for experiments 1 and 2, respectively.

Suggested Citation

  • Sultan Almotairi & Elsayed Badr & Mustafa Abdul Salam & Alshimaa Dawood, 2023. "Three Chaotic Strategies for Enhancing the Self-Adaptive Harris Hawk Optimization Algorithm for Global Optimization," Mathematics, MDPI, vol. 11(19), pages 1-27, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4181-:d:1254444
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/19/4181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/19/4181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tingting Zou & Changyu Wang, 2022. "Adaptive Relative Reflection Harris Hawks Optimization for Global Optimization," Mathematics, MDPI, vol. 10(7), pages 1-19, April.
    2. Yang, Dixiong & Li, Gang & Cheng, Gengdong, 2007. "On the efficiency of chaos optimization algorithms for global optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1366-1375.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yeong-Jeu, 2009. "An exponential observer for the generalized Rossler chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2457-2461.
    2. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    3. Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
    4. Imene Khenissi & Tawfik Guesmi & Ismail Marouani & Badr M. Alshammari & Khalid Alqunun & Saleh Albadran & Salem Rahmani & Rafik Neji, 2023. "Energy Management Strategy for Optimal Sizing and Siting of PVDG-BES Systems under Fixed and Intermittent Load Consumption Profile," Sustainability, MDPI, vol. 15(2), pages 1-28, January.
    5. Coelho, Leandro dos Santos, 2009. "Reliability–redundancy optimization by means of a chaotic differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 594-602.
    6. Salil Bharany & Sandeep Sharma & Surbhi Bhatia & Mohammad Khalid Imam Rahmani & Mohammed Shuaib & Saima Anwar Lashari, 2022. "Energy Efficient Clustering Protocol for FANETS Using Moth Flame Optimization," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    7. Cheng, Shen & Zhao, Gaiju & Gao, Ming & Shi, Yuetao & Huang, Mingming & Yousefi, Nasser, 2021. "Optimal hybrid energy system for locomotive utilizing improved Locust Swarm optimizer," Energy, Elsevier, vol. 218(C).
    8. Martin Ćalasan & Dražen Jovanović & Vesna Rubežić & Saša Mujović & Slobodan Đukanović, 2019. "Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach," Energies, MDPI, vol. 12(21), pages 1-14, November.
    9. El-Shorbagy, M.A. & Mousa, A.A. & Nasr, S.M., 2016. "A chaos-based evolutionary algorithm for general nonlinear programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 8-21.
    10. Hossein Lotfi, 2022. "A Multiobjective Evolutionary Approach for Solving the Multi-Area Dynamic Economic Emission Dispatch Problem Considering Reliability Concerns," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    11. Rani, Mamta & Agarwal, Rashi, 2009. "A new experimental approach to study the stability of logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2062-2066.
    12. Naanaa, Anis, 2015. "Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 402-411.
    13. Hamza Mohammed Ridha Al-Khafaji, 2022. "Improving Quality Indicators of the Cloud-Based IoT Networks Using an Improved Form of Seagull Optimization Algorithm," Future Internet, MDPI, vol. 14(10), pages 1-13, September.
    14. Li, Huan & Li, Kun & Zafetti, Nicholas & Gu, Jianfeng, 2020. "Improvement of energy supply configuration for telecommunication system in remote area s based on improved chaotic world cup optimization algorithm," Energy, Elsevier, vol. 192(C).
    15. Rani, Mamta & Agarwal, Rashi, 2009. "Generation of fractals from complex logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 447-452.
    16. Deepak Kumar & Mamta Rani, 2022. "Alternated Superior Chaotic Biogeography-Based Algorithm for Optimization Problems," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 13(1), pages 1-39, January.
    17. He, Yao-Yao & Zhou, Jian-Zhong & Xiang, Xiu-Qiao & Chen, Heng & Qin, Hui, 2009. "Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3169-3176.
    18. He, Bohao & Jia, Biying & Zhao, Yanghe & Wang, Xu & Wei, Mao & Dietzel, Ranae, 2022. "Estimate soil moisture of maize by combining support vector machine and chaotic whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 267(C).
    19. Ren, Xiaojun & Wu, Yongtang & Hao, Dongmin & Liu, Guoxu & Zafetti, Nicholas, 2021. "Analysis of the performance of the multi-objective hybrid hydropower-photovoltaic-wind system to reduce variance and maximum power generation by developed owl search algorithm," Energy, Elsevier, vol. 231(C).
    20. Maytham N. Meqdad & Seifedine Kadry & Hafiz Tayyab Rauf, 2022. "Improved Dragonfly Optimization Algorithm for Detecting IoT Outlier Sensors," Future Internet, MDPI, vol. 14(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4181-:d:1254444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.